Step | Hyp | Ref
| Expression |
1 | | tgpt1.j |
. . 3
⊢ 𝐽 = (TopOpen‘𝐺) |
2 | 1 | tgpt1 23269 |
. 2
⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre)) |
3 | | t1t0 22499 |
. . 3
⊢ (𝐽 ∈ Fre → 𝐽 ∈ Kol2) |
4 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑧)) |
5 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑧)) |
6 | 4, 5 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → ((𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤) ↔ (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
7 | 6 | rspccva 3560 |
. . . . . . . . . 10
⊢
((∀𝑤 ∈
𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤) ∧ 𝑧 ∈ 𝐽) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
8 | 7 | adantll 711 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ 𝑧 ∈ 𝐽) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
9 | | tgpgrp 23229 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ Grp) |
10 | 9 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝐺 ∈ Grp) |
11 | | simpllr 773 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) |
12 | 11 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝑦 ∈ (Base‘𝐺)) |
13 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝐺) =
(Base‘𝐺) |
14 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝐺) = (0g‘𝐺) |
15 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(-g‘𝐺) = (-g‘𝐺) |
16 | 13, 14, 15 | grpsubid 18659 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦(-g‘𝐺)𝑦) = (0g‘𝐺)) |
17 | 10, 12, 16 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (𝑦(-g‘𝐺)𝑦) = (0g‘𝐺)) |
18 | 17 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → ((𝑦(-g‘𝐺)𝑦)(+g‘𝐺)𝑥) = ((0g‘𝐺)(+g‘𝐺)𝑥)) |
19 | 11 | simpld 495 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝑥 ∈ (Base‘𝐺)) |
20 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝐺) = (+g‘𝐺) |
21 | 13, 20, 14 | grplid 18609 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) →
((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
22 | 10, 19, 21 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → ((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥) |
23 | 18, 22 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → ((𝑦(-g‘𝐺)𝑦)(+g‘𝐺)𝑥) = 𝑥) |
24 | 13, 20, 15 | grpnpcan 18667 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) = 𝑦) |
25 | 10, 12, 19, 24 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → ((𝑦(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) = 𝑦) |
26 | | simprr 770 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝑦 ∈ 𝑧) |
27 | 25, 26 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → ((𝑦(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) ∈ 𝑧) |
28 | | oveq2 7283 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑥 → (𝑦(-g‘𝐺)𝑎) = (𝑦(-g‘𝐺)𝑥)) |
29 | 28 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑥 → ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥) = ((𝑦(-g‘𝐺)𝑥)(+g‘𝐺)𝑥)) |
30 | 29 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑥 → (((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥) ∈ 𝑧 ↔ ((𝑦(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) ∈ 𝑧)) |
31 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) = (𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) |
32 | 31 | mptpreima 6141 |
. . . . . . . . . . . . . . 15
⊢ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) = {𝑎 ∈ (Base‘𝐺) ∣ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥) ∈ 𝑧} |
33 | 30, 32 | elrab2 3627 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ((𝑦(-g‘𝐺)𝑥)(+g‘𝐺)𝑥) ∈ 𝑧)) |
34 | 19, 27, 33 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝑥 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧)) |
35 | | eleq2 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧))) |
36 | | eleq2 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) → (𝑦 ∈ 𝑤 ↔ 𝑦 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧))) |
37 | 35, 36 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) → ((𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤) ↔ (𝑥 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) → 𝑦 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧)))) |
38 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) |
39 | | tgptmd 23230 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) |
40 | 39 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝐺 ∈ TopMnd) |
41 | 1, 13 | tgptopon 23233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ TopGrp → 𝐽 ∈
(TopOn‘(Base‘𝐺))) |
42 | 41 | ad3antrrr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝐽 ∈ (TopOn‘(Base‘𝐺))) |
43 | 42, 42, 12 | cnmptc 22813 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (𝐽 Cn 𝐽)) |
44 | 42 | cnmptid 22812 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ 𝑎) ∈ (𝐽 Cn 𝐽)) |
45 | 1, 15 | tgpsubcn 23241 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ TopGrp →
(-g‘𝐺)
∈ ((𝐽
×t 𝐽) Cn
𝐽)) |
46 | 45 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (-g‘𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
47 | 42, 43, 44, 46 | cnmpt12f 22817 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ (𝑦(-g‘𝐺)𝑎)) ∈ (𝐽 Cn 𝐽)) |
48 | 42, 42, 19 | cnmptc 22813 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
49 | 1, 20, 40, 42, 47, 48 | cnmpt1plusg 23238 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) ∈ (𝐽 Cn 𝐽)) |
50 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝑧 ∈ 𝐽) |
51 | | cnima 22416 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) ∈ (𝐽 Cn 𝐽) ∧ 𝑧 ∈ 𝐽) → (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) ∈ 𝐽) |
52 | 49, 50, 51 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) ∈ 𝐽) |
53 | 37, 38, 52 | rspcdva 3562 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → (𝑥 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) → 𝑦 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧))) |
54 | 34, 53 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝑦 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧)) |
55 | | oveq2 7283 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑦 → (𝑦(-g‘𝐺)𝑎) = (𝑦(-g‘𝐺)𝑦)) |
56 | 55 | oveq1d 7290 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑦 → ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥) = ((𝑦(-g‘𝐺)𝑦)(+g‘𝐺)𝑥)) |
57 | 56 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑦 → (((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥) ∈ 𝑧 ↔ ((𝑦(-g‘𝐺)𝑦)(+g‘𝐺)𝑥) ∈ 𝑧)) |
58 | 57, 32 | elrab2 3627 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) ↔ (𝑦 ∈ (Base‘𝐺) ∧ ((𝑦(-g‘𝐺)𝑦)(+g‘𝐺)𝑥) ∈ 𝑧)) |
59 | 58 | simprbi 497 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (◡(𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g‘𝐺)𝑎)(+g‘𝐺)𝑥)) “ 𝑧) → ((𝑦(-g‘𝐺)𝑦)(+g‘𝐺)𝑥) ∈ 𝑧) |
60 | 54, 59 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → ((𝑦(-g‘𝐺)𝑦)(+g‘𝐺)𝑥) ∈ 𝑧) |
61 | 23, 60 | eqeltrrd 2840 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ (𝑧 ∈ 𝐽 ∧ 𝑦 ∈ 𝑧)) → 𝑥 ∈ 𝑧) |
62 | 61 | expr 457 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ 𝑧 ∈ 𝐽) → (𝑦 ∈ 𝑧 → 𝑥 ∈ 𝑧)) |
63 | 8, 62 | impbid 211 |
. . . . . . . 8
⊢ ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) ∧ 𝑧 ∈ 𝐽) → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
64 | 63 | ralrimiva 3103 |
. . . . . . 7
⊢ (((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤)) → ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) |
65 | 64 | ex 413 |
. . . . . 6
⊢ ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤) → ∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧))) |
66 | 65 | imim1d 82 |
. . . . 5
⊢ ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) → (∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤) → 𝑥 = 𝑦))) |
67 | 66 | ralimdvva 3126 |
. . . 4
⊢ (𝐺 ∈ TopGrp →
(∀𝑥 ∈
(Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) → 𝑥 = 𝑦) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤) → 𝑥 = 𝑦))) |
68 | | ist0-2 22495 |
. . . . 5
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) → 𝑥 = 𝑦))) |
69 | 41, 68 | syl 17 |
. . . 4
⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Kol2 ↔
∀𝑥 ∈
(Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑧 ∈ 𝐽 (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧) → 𝑥 = 𝑦))) |
70 | | ist1-2 22498 |
. . . . 5
⊢ (𝐽 ∈
(TopOn‘(Base‘𝐺)) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤) → 𝑥 = 𝑦))) |
71 | 41, 70 | syl 17 |
. . . 4
⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑤 ∈ 𝐽 (𝑥 ∈ 𝑤 → 𝑦 ∈ 𝑤) → 𝑥 = 𝑦))) |
72 | 67, 69, 71 | 3imtr4d 294 |
. . 3
⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Kol2 → 𝐽 ∈ Fre)) |
73 | 3, 72 | impbid2 225 |
. 2
⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Fre ↔ 𝐽 ∈ Kol2)) |
74 | 2, 73 | bitrd 278 |
1
⊢ (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2)) |