MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpt0 Structured version   Visualization version   GIF version

Theorem tgpt0 24054
Description: Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypothesis
Ref Expression
tgpt1.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgpt0 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2))

Proof of Theorem tgpt0
Dummy variables 𝑤 𝑎 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpt1.j . . 3 𝐽 = (TopOpen‘𝐺)
21tgpt1 24053 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))
3 t1t0 23283 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
4 eleq2 2822 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
5 eleq2 2822 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑦𝑤𝑦𝑧))
64, 5imbi12d 344 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝑥𝑤𝑦𝑤) ↔ (𝑥𝑧𝑦𝑧)))
76rspccva 3572 . . . . . . . . . 10 ((∀𝑤𝐽 (𝑥𝑤𝑦𝑤) ∧ 𝑧𝐽) → (𝑥𝑧𝑦𝑧))
87adantll 714 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ 𝑧𝐽) → (𝑥𝑧𝑦𝑧))
9 tgpgrp 24013 . . . . . . . . . . . . . . 15 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
109ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝐺 ∈ Grp)
11 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
1211simprd 495 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑦 ∈ (Base‘𝐺))
13 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
14 eqid 2733 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
15 eqid 2733 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
1613, 14, 15grpsubid 18945 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦(-g𝐺)𝑦) = (0g𝐺))
1710, 12, 16syl2anc 584 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑦(-g𝐺)𝑦) = (0g𝐺))
1817oveq1d 7370 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) = ((0g𝐺)(+g𝐺)𝑥))
1911simpld 494 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑥 ∈ (Base‘𝐺))
20 eqid 2733 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
2113, 20, 14grplid 18888 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
2210, 19, 21syl2anc 584 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
2318, 22eqtrd 2768 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) = 𝑥)
2413, 20, 15grpnpcan 18953 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝑦)
2510, 12, 19, 24syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝑦)
26 simprr 772 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑦𝑧)
2725, 26eqeltrd 2833 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧)
28 oveq2 7363 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → (𝑦(-g𝐺)𝑎) = (𝑦(-g𝐺)𝑥))
2928oveq1d 7370 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) = ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥))
3029eleq1d 2818 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) ∈ 𝑧 ↔ ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧))
31 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) = (𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥))
3231mptpreima 6193 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) = {𝑎 ∈ (Base‘𝐺) ∣ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) ∈ 𝑧}
3330, 32elrab2 3646 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧))
3419, 27, 33sylanbrc 583 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧))
35 eleq2 2822 . . . . . . . . . . . . . . 15 (𝑤 = ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → (𝑥𝑤𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧)))
36 eleq2 2822 . . . . . . . . . . . . . . 15 (𝑤 = ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → (𝑦𝑤𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧)))
3735, 36imbi12d 344 . . . . . . . . . . . . . 14 (𝑤 = ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → ((𝑥𝑤𝑦𝑤) ↔ (𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → 𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧))))
38 simplr 768 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ∀𝑤𝐽 (𝑥𝑤𝑦𝑤))
39 tgptmd 24014 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
4039ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝐺 ∈ TopMnd)
411, 13tgptopon 24017 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
4241ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
4342, 42, 12cnmptc 23597 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
4442cnmptid 23596 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ 𝑎) ∈ (𝐽 Cn 𝐽))
451, 15tgpsubcn 24025 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4645ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4742, 43, 44, 46cnmpt12f 23601 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ (𝑦(-g𝐺)𝑎)) ∈ (𝐽 Cn 𝐽))
4842, 42, 19cnmptc 23597 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
491, 20, 40, 42, 47, 48cnmpt1plusg 24022 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽))
50 simprl 770 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑧𝐽)
51 cnima 23200 . . . . . . . . . . . . . . 15 (((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽) ∧ 𝑧𝐽) → ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) ∈ 𝐽)
5249, 50, 51syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) ∈ 𝐽)
5337, 38, 52rspcdva 3574 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → 𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧)))
5434, 53mpd 15 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧))
55 oveq2 7363 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑦(-g𝐺)𝑎) = (𝑦(-g𝐺)𝑦))
5655oveq1d 7370 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) = ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥))
5756eleq1d 2818 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) ∈ 𝑧 ↔ ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) ∈ 𝑧))
5857, 32elrab2 3646 . . . . . . . . . . . . 13 (𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) ↔ (𝑦 ∈ (Base‘𝐺) ∧ ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) ∈ 𝑧))
5958simprbi 496 . . . . . . . . . . . 12 (𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) ∈ 𝑧)
6054, 59syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) ∈ 𝑧)
6123, 60eqeltrrd 2834 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑥𝑧)
6261expr 456 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ 𝑧𝐽) → (𝑦𝑧𝑥𝑧))
638, 62impbid 212 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ 𝑧𝐽) → (𝑥𝑧𝑦𝑧))
6463ralrimiva 3125 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) → ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
6564ex 412 . . . . . 6 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))
6665imim1d 82 . . . . 5 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦) → (∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → 𝑥 = 𝑦)))
6766ralimdvva 3180 . . . 4 (𝐺 ∈ TopGrp → (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → 𝑥 = 𝑦)))
68 ist0-2 23279 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
6941, 68syl 17 . . . 4 (𝐺 ∈ TopGrp → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
70 ist1-2 23282 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → 𝑥 = 𝑦)))
7141, 70syl 17 . . . 4 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → 𝑥 = 𝑦)))
7267, 69, 713imtr4d 294 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Kol2 → 𝐽 ∈ Fre))
733, 72impbid2 226 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre ↔ 𝐽 ∈ Kol2))
742, 73bitrd 279 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  cmpt 5176  ccnv 5620  cima 5624  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  TopOpenctopn 17332  0gc0g 17350  Grpcgrp 18854  -gcsg 18856  TopOnctopon 22845   Cn ccn 23159  Kol2ct0 23241  Frect1 23242  Hauscha 23243   ×t ctx 23495  TopMndctmd 24005  TopGrpctgp 24006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-0g 17352  df-topgen 17354  df-plusf 18555  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-cn 23162  df-cnp 23163  df-t0 23248  df-t1 23249  df-haus 23250  df-tx 23497  df-tmd 24007  df-tgp 24008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator