MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpt0 Structured version   Visualization version   GIF version

Theorem tgpt0 22727
Description: Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypothesis
Ref Expression
tgpt1.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgpt0 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2))

Proof of Theorem tgpt0
Dummy variables 𝑤 𝑎 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpt1.j . . 3 𝐽 = (TopOpen‘𝐺)
21tgpt1 22726 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Fre))
3 t1t0 21956 . . 3 (𝐽 ∈ Fre → 𝐽 ∈ Kol2)
4 eleq2 2901 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
5 eleq2 2901 . . . . . . . . . . . 12 (𝑤 = 𝑧 → (𝑦𝑤𝑦𝑧))
64, 5imbi12d 347 . . . . . . . . . . 11 (𝑤 = 𝑧 → ((𝑥𝑤𝑦𝑤) ↔ (𝑥𝑧𝑦𝑧)))
76rspccva 3622 . . . . . . . . . 10 ((∀𝑤𝐽 (𝑥𝑤𝑦𝑤) ∧ 𝑧𝐽) → (𝑥𝑧𝑦𝑧))
87adantll 712 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ 𝑧𝐽) → (𝑥𝑧𝑦𝑧))
9 tgpgrp 22686 . . . . . . . . . . . . . . 15 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
109ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝐺 ∈ Grp)
11 simpllr 774 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
1211simprd 498 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑦 ∈ (Base‘𝐺))
13 eqid 2821 . . . . . . . . . . . . . . 15 (Base‘𝐺) = (Base‘𝐺)
14 eqid 2821 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
15 eqid 2821 . . . . . . . . . . . . . . 15 (-g𝐺) = (-g𝐺)
1613, 14, 15grpsubid 18183 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦(-g𝐺)𝑦) = (0g𝐺))
1710, 12, 16syl2anc 586 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑦(-g𝐺)𝑦) = (0g𝐺))
1817oveq1d 7171 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) = ((0g𝐺)(+g𝐺)𝑥))
1911simpld 497 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑥 ∈ (Base‘𝐺))
20 eqid 2821 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
2113, 20, 14grplid 18133 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺)) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
2210, 19, 21syl2anc 586 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((0g𝐺)(+g𝐺)𝑥) = 𝑥)
2318, 22eqtrd 2856 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) = 𝑥)
2413, 20, 15grpnpcan 18191 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝑦)
2510, 12, 19, 24syl3anc 1367 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝑦)
26 simprr 771 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑦𝑧)
2725, 26eqeltrd 2913 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧)
28 oveq2 7164 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → (𝑦(-g𝐺)𝑎) = (𝑦(-g𝐺)𝑥))
2928oveq1d 7171 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) = ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥))
3029eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) ∈ 𝑧 ↔ ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧))
31 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) = (𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥))
3231mptpreima 6092 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) = {𝑎 ∈ (Base‘𝐺) ∣ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) ∈ 𝑧}
3330, 32elrab2 3683 . . . . . . . . . . . . . 14 (𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ((𝑦(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧))
3419, 27, 33sylanbrc 585 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧))
35 eleq2 2901 . . . . . . . . . . . . . . 15 (𝑤 = ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → (𝑥𝑤𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧)))
36 eleq2 2901 . . . . . . . . . . . . . . 15 (𝑤 = ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → (𝑦𝑤𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧)))
3735, 36imbi12d 347 . . . . . . . . . . . . . 14 (𝑤 = ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → ((𝑥𝑤𝑦𝑤) ↔ (𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → 𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧))))
38 simplr 767 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ∀𝑤𝐽 (𝑥𝑤𝑦𝑤))
39 tgptmd 22687 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd)
4039ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝐺 ∈ TopMnd)
411, 13tgptopon 22690 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
4241ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
4342, 42, 12cnmptc 22270 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (𝐽 Cn 𝐽))
4442cnmptid 22269 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ 𝑎) ∈ (𝐽 Cn 𝐽))
451, 15tgpsubcn 22698 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4645ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4742, 43, 44, 46cnmpt12f 22274 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ (𝑦(-g𝐺)𝑎)) ∈ (𝐽 Cn 𝐽))
4842, 42, 19cnmptc 22270 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (𝐽 Cn 𝐽))
491, 20, 40, 42, 47, 48cnmpt1plusg 22695 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽))
50 simprl 769 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑧𝐽)
51 cnima 21873 . . . . . . . . . . . . . . 15 (((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) ∈ (𝐽 Cn 𝐽) ∧ 𝑧𝐽) → ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) ∈ 𝐽)
5249, 50, 51syl2anc 586 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) ∈ 𝐽)
5337, 38, 52rspcdva 3625 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → (𝑥 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → 𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧)))
5434, 53mpd 15 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧))
55 oveq2 7164 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑦(-g𝐺)𝑎) = (𝑦(-g𝐺)𝑦))
5655oveq1d 7171 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) = ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥))
5756eleq1d 2897 . . . . . . . . . . . . . 14 (𝑎 = 𝑦 → (((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥) ∈ 𝑧 ↔ ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) ∈ 𝑧))
5857, 32elrab2 3683 . . . . . . . . . . . . 13 (𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) ↔ (𝑦 ∈ (Base‘𝐺) ∧ ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) ∈ 𝑧))
5958simprbi 499 . . . . . . . . . . . 12 (𝑦 ∈ ((𝑎 ∈ (Base‘𝐺) ↦ ((𝑦(-g𝐺)𝑎)(+g𝐺)𝑥)) “ 𝑧) → ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) ∈ 𝑧)
6054, 59syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → ((𝑦(-g𝐺)𝑦)(+g𝐺)𝑥) ∈ 𝑧)
6123, 60eqeltrrd 2914 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ (𝑧𝐽𝑦𝑧)) → 𝑥𝑧)
6261expr 459 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ 𝑧𝐽) → (𝑦𝑧𝑥𝑧))
638, 62impbid 214 . . . . . . . 8 ((((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) ∧ 𝑧𝐽) → (𝑥𝑧𝑦𝑧))
6463ralrimiva 3182 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) ∧ ∀𝑤𝐽 (𝑥𝑤𝑦𝑤)) → ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
6564ex 415 . . . . . 6 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))
6665imim1d 82 . . . . 5 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦) → (∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → 𝑥 = 𝑦)))
6766ralimdvva 3179 . . . 4 (𝐺 ∈ TopGrp → (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦) → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → 𝑥 = 𝑦)))
68 ist0-2 21952 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
6941, 68syl 17 . . . 4 (𝐺 ∈ TopGrp → (𝐽 ∈ Kol2 ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
70 ist1-2 21955 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → 𝑥 = 𝑦)))
7141, 70syl 17 . . . 4 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(∀𝑤𝐽 (𝑥𝑤𝑦𝑤) → 𝑥 = 𝑦)))
7267, 69, 713imtr4d 296 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Kol2 → 𝐽 ∈ Fre))
733, 72impbid2 228 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Fre ↔ 𝐽 ∈ Kol2))
742, 73bitrd 281 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ 𝐽 ∈ Kol2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  cmpt 5146  ccnv 5554  cima 5558  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  TopOpenctopn 16695  0gc0g 16713  Grpcgrp 18103  -gcsg 18105  TopOnctopon 21518   Cn ccn 21832  Kol2ct0 21914  Frect1 21915  Hauscha 21916   ×t ctx 22168  TopMndctmd 22678  TopGrpctgp 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408  df-0g 16715  df-topgen 16717  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-cn 21835  df-cnp 21836  df-t0 21921  df-t1 21922  df-haus 21923  df-tx 22170  df-tmd 22680  df-tgp 22681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator