Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd Structured version   Visualization version   GIF version

Theorem equivbnd 37797
Description: If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then boundedness of 𝑀 implies boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivbnd.1 (𝜑𝑀 ∈ (Bnd‘𝑋))
equivbnd.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivbnd.3 (𝜑𝑅 ∈ ℝ+)
equivbnd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
Assertion
Ref Expression
equivbnd (𝜑𝑁 ∈ (Bnd‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑅,𝑦

Proof of Theorem equivbnd
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivbnd.2 . 2 (𝜑𝑁 ∈ (Met‘𝑋))
2 equivbnd.1 . . . 4 (𝜑𝑀 ∈ (Bnd‘𝑋))
3 isbnd3b 37792 . . . . 5 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟))
43simprbi 496 . . . 4 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
52, 4syl 17 . . 3 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
6 equivbnd.3 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
76rpred 13077 . . . . . 6 (𝜑𝑅 ∈ ℝ)
8 remulcl 11240 . . . . . 6 ((𝑅 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
97, 8sylan 580 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
10 bndmet 37788 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
112, 10syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (Met‘𝑋))
1211adantr 480 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ) → 𝑀 ∈ (Met‘𝑋))
13 metcl 24342 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
14133expb 1121 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
1512, 14sylan 580 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
16 simplr 769 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑟 ∈ ℝ)
176ad2antrr 726 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ+)
1815, 16, 17lemul2d 13121 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)))
19 equivbnd.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
2019adantlr 715 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
211adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ) → 𝑁 ∈ (Met‘𝑋))
22 metcl 24342 . . . . . . . . . . 11 ((𝑁 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑁𝑦) ∈ ℝ)
23223expb 1121 . . . . . . . . . 10 ((𝑁 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
2421, 23sylan 580 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
257ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
2625, 15remulcld 11291 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ)
279adantr 480 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · 𝑟) ∈ ℝ)
28 letr 11355 . . . . . . . . 9 (((𝑥𝑁𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ ∧ (𝑅 · 𝑟) ∈ ℝ) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
2924, 26, 27, 28syl3anc 1373 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3020, 29mpand 695 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3118, 30sylbid 240 . . . . . 6 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3231ralimdvva 3206 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
33 breq2 5147 . . . . . . 7 (𝑠 = (𝑅 · 𝑟) → ((𝑥𝑁𝑦) ≤ 𝑠 ↔ (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
34332ralbidv 3221 . . . . . 6 (𝑠 = (𝑅 · 𝑟) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3534rspcev 3622 . . . . 5 (((𝑅 · 𝑟) ∈ ℝ ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)) → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
369, 32, 35syl6an 684 . . . 4 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
3736rexlimdva 3155 . . 3 (𝜑 → (∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
385, 37mpd 15 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
39 isbnd3b 37792 . 2 (𝑁 ∈ (Bnd‘𝑋) ↔ (𝑁 ∈ (Met‘𝑋) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
401, 38, 39sylanbrc 583 1 (𝜑𝑁 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154   · cmul 11160  cle 11296  +crp 13034  Metcmet 21350  Bndcbnd 37774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-ec 8747  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-bnd 37786
This theorem is referenced by:  equivbnd2  37799
  Copyright terms: Public domain W3C validator