Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd Structured version   Visualization version   GIF version

Theorem equivbnd 34949
Description: If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then boundedness of 𝑀 implies boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivbnd.1 (𝜑𝑀 ∈ (Bnd‘𝑋))
equivbnd.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivbnd.3 (𝜑𝑅 ∈ ℝ+)
equivbnd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
Assertion
Ref Expression
equivbnd (𝜑𝑁 ∈ (Bnd‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑅,𝑦

Proof of Theorem equivbnd
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivbnd.2 . 2 (𝜑𝑁 ∈ (Met‘𝑋))
2 equivbnd.1 . . . 4 (𝜑𝑀 ∈ (Bnd‘𝑋))
3 isbnd3b 34944 . . . . 5 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟))
43simprbi 497 . . . 4 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
52, 4syl 17 . . 3 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
6 equivbnd.3 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
76rpred 12419 . . . . . 6 (𝜑𝑅 ∈ ℝ)
8 remulcl 10610 . . . . . 6 ((𝑅 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
97, 8sylan 580 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
10 bndmet 34940 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
112, 10syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (Met‘𝑋))
1211adantr 481 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ) → 𝑀 ∈ (Met‘𝑋))
13 metcl 22869 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
14133expb 1112 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
1512, 14sylan 580 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
16 simplr 765 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑟 ∈ ℝ)
176ad2antrr 722 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ+)
1815, 16, 17lemul2d 12463 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)))
19 equivbnd.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
2019adantlr 711 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
211adantr 481 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ) → 𝑁 ∈ (Met‘𝑋))
22 metcl 22869 . . . . . . . . . . 11 ((𝑁 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑁𝑦) ∈ ℝ)
23223expb 1112 . . . . . . . . . 10 ((𝑁 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
2421, 23sylan 580 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
257ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
2625, 15remulcld 10659 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ)
279adantr 481 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · 𝑟) ∈ ℝ)
28 letr 10722 . . . . . . . . 9 (((𝑥𝑁𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ ∧ (𝑅 · 𝑟) ∈ ℝ) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
2924, 26, 27, 28syl3anc 1363 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3020, 29mpand 691 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3118, 30sylbid 241 . . . . . 6 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3231ralimdvva 3176 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
33 breq2 5061 . . . . . . 7 (𝑠 = (𝑅 · 𝑟) → ((𝑥𝑁𝑦) ≤ 𝑠 ↔ (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
34332ralbidv 3196 . . . . . 6 (𝑠 = (𝑅 · 𝑟) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3534rspcev 3620 . . . . 5 (((𝑅 · 𝑟) ∈ ℝ ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)) → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
369, 32, 35syl6an 680 . . . 4 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
3736rexlimdva 3281 . . 3 (𝜑 → (∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
385, 37mpd 15 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
39 isbnd3b 34944 . 2 (𝑁 ∈ (Bnd‘𝑋) ↔ (𝑁 ∈ (Met‘𝑋) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
401, 38, 39sylanbrc 583 1 (𝜑𝑁 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524   · cmul 10530  cle 10664  +crp 12377  Metcmet 20459  Bndcbnd 34926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-ec 8280  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-2 11688  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-bnd 34938
This theorem is referenced by:  equivbnd2  34951
  Copyright terms: Public domain W3C validator