Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd Structured version   Visualization version   GIF version

Theorem equivbnd 37757
Description: If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then boundedness of 𝑀 implies boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivbnd.1 (𝜑𝑀 ∈ (Bnd‘𝑋))
equivbnd.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivbnd.3 (𝜑𝑅 ∈ ℝ+)
equivbnd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
Assertion
Ref Expression
equivbnd (𝜑𝑁 ∈ (Bnd‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑅,𝑦

Proof of Theorem equivbnd
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivbnd.2 . 2 (𝜑𝑁 ∈ (Met‘𝑋))
2 equivbnd.1 . . . 4 (𝜑𝑀 ∈ (Bnd‘𝑋))
3 isbnd3b 37752 . . . . 5 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟))
43simprbi 496 . . . 4 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
52, 4syl 17 . . 3 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
6 equivbnd.3 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
76rpred 12971 . . . . . 6 (𝜑𝑅 ∈ ℝ)
8 remulcl 11129 . . . . . 6 ((𝑅 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
97, 8sylan 580 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
10 bndmet 37748 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
112, 10syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (Met‘𝑋))
1211adantr 480 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ) → 𝑀 ∈ (Met‘𝑋))
13 metcl 24196 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
14133expb 1120 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
1512, 14sylan 580 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
16 simplr 768 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑟 ∈ ℝ)
176ad2antrr 726 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ+)
1815, 16, 17lemul2d 13015 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)))
19 equivbnd.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
2019adantlr 715 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
211adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ) → 𝑁 ∈ (Met‘𝑋))
22 metcl 24196 . . . . . . . . . . 11 ((𝑁 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑁𝑦) ∈ ℝ)
23223expb 1120 . . . . . . . . . 10 ((𝑁 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
2421, 23sylan 580 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
257ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
2625, 15remulcld 11180 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ)
279adantr 480 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · 𝑟) ∈ ℝ)
28 letr 11244 . . . . . . . . 9 (((𝑥𝑁𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ ∧ (𝑅 · 𝑟) ∈ ℝ) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
2924, 26, 27, 28syl3anc 1373 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3020, 29mpand 695 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3118, 30sylbid 240 . . . . . 6 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3231ralimdvva 3182 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
33 breq2 5106 . . . . . . 7 (𝑠 = (𝑅 · 𝑟) → ((𝑥𝑁𝑦) ≤ 𝑠 ↔ (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
34332ralbidv 3199 . . . . . 6 (𝑠 = (𝑅 · 𝑟) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3534rspcev 3585 . . . . 5 (((𝑅 · 𝑟) ∈ ℝ ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)) → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
369, 32, 35syl6an 684 . . . 4 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
3736rexlimdva 3134 . . 3 (𝜑 → (∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
385, 37mpd 15 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
39 isbnd3b 37752 . 2 (𝑁 ∈ (Bnd‘𝑋) ↔ (𝑁 ∈ (Met‘𝑋) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
401, 38, 39sylanbrc 583 1 (𝜑𝑁 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043   · cmul 11049  cle 11185  +crp 12927  Metcmet 21226  Bndcbnd 37734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-ec 8650  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-bnd 37746
This theorem is referenced by:  equivbnd2  37759
  Copyright terms: Public domain W3C validator