MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatf1 Structured version   Visualization version   GIF version

Theorem mat2pmatf1 22649
Description: The matrix transformation is a 1-1 function from the matrices to the polynomial matrices. (Contributed by AV, 28-Oct-2019.) (Proof shortened by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatf1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐻)

Proof of Theorem mat2pmatf1
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatbas.b . . 3 𝐵 = (Base‘𝐴)
4 mat2pmatbas.p . . 3 𝑃 = (Poly1𝑅)
5 mat2pmatbas.c . . 3 𝐶 = (𝑁 Mat 𝑃)
6 mat2pmatbas0.h . . 3 𝐻 = (Base‘𝐶)
71, 2, 3, 4, 5, 6mat2pmatf 22648 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐻)
8 simpl 482 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
98anim2i 617 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
10 df-3an 1088 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
119, 10sylibr 234 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
12 eqid 2729 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘𝑃)
131, 2, 3, 4, 12mat2pmatvalel 22645 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑥)𝑗) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
1411, 13sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑥)𝑗) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
15 simpr 484 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
1615anim2i 617 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
17 df-3an 1088 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
1816, 17sylibr 234 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
191, 2, 3, 4, 12mat2pmatvalel 22645 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑦)𝑗) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
2018, 19sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑦)𝑗) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
2114, 20eqeq12d 2745 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) ↔ ((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
22 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2729 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
244, 12, 22, 23ply1sclf1 22208 . . . . . . . 8 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃))
2524ad3antlr 731 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃))
26 simprl 770 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
27 simprr 772 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
28 simplrl 776 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥𝐵)
292, 22, 3, 26, 27, 28matecld 22346 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
30 simplrr 777 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑦𝐵)
312, 22, 3, 26, 27, 30matecld 22346 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
32 f1veqaeq 7213 . . . . . . 7 (((algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃) ∧ ((𝑖𝑥𝑗) ∈ (Base‘𝑅) ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅))) → (((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3325, 29, 31, 32syl12anc 836 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3421, 33sylbid 240 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3534ralimdvva 3182 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
361, 2, 3, 4, 5, 6mat2pmatbas0 22647 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) ∈ 𝐻)
3711, 36syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) ∈ 𝐻)
381, 2, 3, 4, 5, 6mat2pmatbas0 22647 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) ∈ 𝐻)
3918, 38syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) ∈ 𝐻)
405, 6eqmat 22344 . . . . 5 (((𝑇𝑥) ∈ 𝐻 ∧ (𝑇𝑦) ∈ 𝐻) → ((𝑇𝑥) = (𝑇𝑦) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗)))
4137, 39, 40syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥) = (𝑇𝑦) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗)))
422, 3eqmat 22344 . . . . 5 ((𝑥𝐵𝑦𝐵) → (𝑥 = 𝑦 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
4342adantl 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = 𝑦 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
4435, 41, 433imtr4d 294 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
4544ralrimivva 3178 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
46 dff13 7211 . 2 (𝑇:𝐵1-1𝐻 ↔ (𝑇:𝐵𝐻 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
477, 45, 46sylanbrc 583 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  Fincfn 8895  Basecbs 17155  Ringcrg 20153  algSccascl 21794  Poly1cpl1 22094   Mat cmat 22327   matToPolyMat cmat2pmat 22624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrng 20466  df-subrg 20490  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-dsmm 21674  df-frlm 21689  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-mat 22328  df-mat2pmat 22627
This theorem is referenced by:  m2cpmf1  22663
  Copyright terms: Public domain W3C validator