MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatf1 Structured version   Visualization version   GIF version

Theorem mat2pmatf1 22078
Description: The matrix transformation is a 1-1 function from the matrices to the polynomial matrices. (Contributed by AV, 28-Oct-2019.) (Proof shortened by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatf1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐻)

Proof of Theorem mat2pmatf1
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatbas.b . . 3 𝐵 = (Base‘𝐴)
4 mat2pmatbas.p . . 3 𝑃 = (Poly1𝑅)
5 mat2pmatbas.c . . 3 𝐶 = (𝑁 Mat 𝑃)
6 mat2pmatbas0.h . . 3 𝐻 = (Base‘𝐶)
71, 2, 3, 4, 5, 6mat2pmatf 22077 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐻)
8 simpl 483 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
98anim2i 617 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
10 df-3an 1089 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
119, 10sylibr 233 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
12 eqid 2736 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘𝑃)
131, 2, 3, 4, 12mat2pmatvalel 22074 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑥)𝑗) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
1411, 13sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑥)𝑗) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
15 simpr 485 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
1615anim2i 617 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
17 df-3an 1089 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
1816, 17sylibr 233 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
191, 2, 3, 4, 12mat2pmatvalel 22074 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑦)𝑗) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
2018, 19sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑦)𝑗) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
2114, 20eqeq12d 2752 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) ↔ ((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
22 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2736 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
244, 12, 22, 23ply1sclf1 21660 . . . . . . . 8 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃))
2524ad3antlr 729 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃))
26 simprl 769 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
27 simprr 771 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
28 simplrl 775 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥𝐵)
292, 22, 3, 26, 27, 28matecld 21775 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
30 simplrr 776 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑦𝐵)
312, 22, 3, 26, 27, 30matecld 21775 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
32 f1veqaeq 7204 . . . . . . 7 (((algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃) ∧ ((𝑖𝑥𝑗) ∈ (Base‘𝑅) ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅))) → (((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3325, 29, 31, 32syl12anc 835 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3421, 33sylbid 239 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3534ralimdvva 3201 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
361, 2, 3, 4, 5, 6mat2pmatbas0 22076 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) ∈ 𝐻)
3711, 36syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) ∈ 𝐻)
381, 2, 3, 4, 5, 6mat2pmatbas0 22076 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) ∈ 𝐻)
3918, 38syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) ∈ 𝐻)
405, 6eqmat 21773 . . . . 5 (((𝑇𝑥) ∈ 𝐻 ∧ (𝑇𝑦) ∈ 𝐻) → ((𝑇𝑥) = (𝑇𝑦) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗)))
4137, 39, 40syl2anc 584 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥) = (𝑇𝑦) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗)))
422, 3eqmat 21773 . . . . 5 ((𝑥𝐵𝑦𝐵) → (𝑥 = 𝑦 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
4342adantl 482 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = 𝑦 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
4435, 41, 433imtr4d 293 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
4544ralrimivva 3197 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
46 dff13 7202 . 2 (𝑇:𝐵1-1𝐻 ↔ (𝑇:𝐵𝐻 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
477, 45, 46sylanbrc 583 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wf 6492  1-1wf1 6493  cfv 6496  (class class class)co 7357  Fincfn 8883  Basecbs 17083  Ringcrg 19964  algSccascl 21258  Poly1cpl1 21548   Mat cmat 21754   matToPolyMat cmat2pmat 22053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-dsmm 21138  df-frlm 21153  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554  df-mat 21755  df-mat2pmat 22056
This theorem is referenced by:  m2cpmf1  22092
  Copyright terms: Public domain W3C validator