MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat2pmatf1 Structured version   Visualization version   GIF version

Theorem mat2pmatf1 21337
Description: The matrix transformation is a 1-1 function from the matrices to the polynomial matrices. (Contributed by AV, 28-Oct-2019.) (Proof shortened by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
mat2pmatbas.t 𝑇 = (𝑁 matToPolyMat 𝑅)
mat2pmatbas.a 𝐴 = (𝑁 Mat 𝑅)
mat2pmatbas.b 𝐵 = (Base‘𝐴)
mat2pmatbas.p 𝑃 = (Poly1𝑅)
mat2pmatbas.c 𝐶 = (𝑁 Mat 𝑃)
mat2pmatbas0.h 𝐻 = (Base‘𝐶)
Assertion
Ref Expression
mat2pmatf1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐻)

Proof of Theorem mat2pmatf1
Dummy variables 𝑥 𝑦 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat2pmatbas.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
2 mat2pmatbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mat2pmatbas.b . . 3 𝐵 = (Base‘𝐴)
4 mat2pmatbas.p . . 3 𝑃 = (Poly1𝑅)
5 mat2pmatbas.c . . 3 𝐶 = (𝑁 Mat 𝑃)
6 mat2pmatbas0.h . . 3 𝐻 = (Base‘𝐶)
71, 2, 3, 4, 5, 6mat2pmatf 21336 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵𝐻)
8 simpl 485 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → 𝑥𝐵)
98anim2i 618 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
10 df-3an 1085 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝐵))
119, 10sylibr 236 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵))
12 eqid 2821 . . . . . . . . 9 (algSc‘𝑃) = (algSc‘𝑃)
131, 2, 3, 4, 12mat2pmatvalel 21333 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑥)𝑗) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
1411, 13sylan 582 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑥)𝑗) = ((algSc‘𝑃)‘(𝑖𝑥𝑗)))
15 simpr 487 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐵) → 𝑦𝐵)
1615anim2i 618 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
17 df-3an 1085 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦𝐵))
1816, 17sylibr 236 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵))
191, 2, 3, 4, 12mat2pmatvalel 21333 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑦)𝑗) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
2018, 19sylan 582 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇𝑦)𝑗) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)))
2114, 20eqeq12d 2837 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) ↔ ((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗))))
22 eqid 2821 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
23 eqid 2821 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
244, 12, 22, 23ply1sclf1 20457 . . . . . . . 8 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃))
2524ad3antlr 729 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃))
26 simprl 769 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
27 simprr 771 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
28 simplrl 775 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥𝐵)
292, 22, 3, 26, 27, 28matecld 21035 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑥𝑗) ∈ (Base‘𝑅))
30 simplrr 776 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑦𝐵)
312, 22, 3, 26, 27, 30matecld 21035 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑦𝑗) ∈ (Base‘𝑅))
32 f1veqaeq 7015 . . . . . . 7 (((algSc‘𝑃):(Base‘𝑅)–1-1→(Base‘𝑃) ∧ ((𝑖𝑥𝑗) ∈ (Base‘𝑅) ∧ (𝑖𝑦𝑗) ∈ (Base‘𝑅))) → (((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3325, 29, 31, 32syl12anc 834 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → (((algSc‘𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘(𝑖𝑦𝑗)) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3421, 33sylbid 242 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) ∧ (𝑖𝑁𝑗𝑁)) → ((𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) → (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
3534ralimdvva 3179 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
361, 2, 3, 4, 5, 6mat2pmatbas0 21335 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝐵) → (𝑇𝑥) ∈ 𝐻)
3711, 36syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑥) ∈ 𝐻)
381, 2, 3, 4, 5, 6mat2pmatbas0 21335 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦𝐵) → (𝑇𝑦) ∈ 𝐻)
3918, 38syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑇𝑦) ∈ 𝐻)
405, 6eqmat 21033 . . . . 5 (((𝑇𝑥) ∈ 𝐻 ∧ (𝑇𝑦) ∈ 𝐻) → ((𝑇𝑥) = (𝑇𝑦) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗)))
4137, 39, 40syl2anc 586 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥) = (𝑇𝑦) ↔ ∀𝑖𝑁𝑗𝑁 (𝑖(𝑇𝑥)𝑗) = (𝑖(𝑇𝑦)𝑗)))
422, 3eqmat 21033 . . . . 5 ((𝑥𝐵𝑦𝐵) → (𝑥 = 𝑦 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
4342adantl 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = 𝑦 ↔ ∀𝑖𝑁𝑗𝑁 (𝑖𝑥𝑗) = (𝑖𝑦𝑗)))
4435, 41, 433imtr4d 296 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝐵𝑦𝐵)) → ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
4544ralrimivva 3191 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝐵𝑦𝐵 ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦))
46 dff13 7013 . 2 (𝑇:𝐵1-1𝐻 ↔ (𝑇:𝐵𝐻 ∧ ∀𝑥𝐵𝑦𝐵 ((𝑇𝑥) = (𝑇𝑦) → 𝑥 = 𝑦)))
477, 45, 46sylanbrc 585 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐵1-1𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wf 6351  1-1wf1 6352  cfv 6355  (class class class)co 7156  Fincfn 8509  Basecbs 16483  Ringcrg 19297  algSccascl 20084  Poly1cpl1 20345   Mat cmat 21016   matToPolyMat cmat2pmat 21312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-coe1 20351  df-dsmm 20876  df-frlm 20891  df-mat 21017  df-mat2pmat 21315
This theorem is referenced by:  m2cpmf1  21351
  Copyright terms: Public domain W3C validator