| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmfunc | Structured version Visualization version GIF version | ||
| Description: The domain of Func is a relation. (Contributed by Zhi Wang, 12-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmfunc | ⊢ Rel dom Func |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-func 17771 | . 2 ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) | |
| 2 | 1 | reldmmpo 7486 | 1 ⊢ Rel dom Func |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 [wsbc 3736 〈cop 4581 {copab 5155 × cxp 5617 dom cdm 5619 Rel wrel 5624 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 ↑m cmap 8756 Xcixp 8827 Basecbs 17126 Hom chom 17178 compcco 17179 Catccat 17576 Idccid 17577 Func cfunc 17767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-dm 5629 df-oprab 7356 df-mpo 7357 df-func 17771 |
| This theorem is referenced by: upfval 49282 lmdfval 49755 cmdfval 49756 |
| Copyright terms: Public domain | W3C validator |