| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > func1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| func1st2nd.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| func1st2nd | ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17787 | . 2 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | func1st2nd.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2ndbr 7984 | . 2 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5095 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 Func cfunc 17779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-func 17783 |
| This theorem is referenced by: func0g2 49063 idfu1stalem 49073 idfu2nda 49076 cofid1a 49085 cofid2a 49086 cofidvala 49089 cofidf2a 49090 cofidf1a 49091 oppfoppc2 49115 funcoppc4 49117 2oppffunc 49119 cofuoppf 49123 idfth 49131 idsubc 49133 uppropd 49154 uptrlem2 49184 uptra 49188 uptrar 49189 uobeqw 49192 uobeq 49193 uptr2a 49195 natoppfb 49204 diag1f1 49280 diag2f1 49282 fuco11b 49310 fucocolem1 49326 fucocolem2 49327 fucocolem3 49328 fucocolem4 49329 fucoco 49330 fucolid 49334 fucorid 49335 fucorid2 49336 postcofval 49337 postcofcl 49338 precofval 49340 precofval2 49342 precofcl 49343 prcoftposcurfucoa 49357 prcof1 49361 prcof2a 49362 prcof2 49363 prcof22a 49365 prcofdiag1 49366 prcofdiag 49367 fucoppclem 49380 fucoppcid 49381 fucoppcco 49382 oppfdiag1 49387 oppfdiag 49389 isinito2lem 49471 termcfuncval 49505 diag1f1olem 49506 diagffth 49511 funcsn 49514 cofuterm 49518 uobeqterm 49519 isinito4 49520 lanval 49592 ranval 49593 lanup 49614 ranup 49615 lmdpropd 49630 cmdpropd 49631 islmd 49638 iscmd 49639 lmddu 49640 termolmd 49643 lmdran 49644 cmdlan 49645 |
| Copyright terms: Public domain | W3C validator |