| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > func1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| func1st2nd.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| func1st2nd | ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17761 | . 2 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | func1st2nd.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2ndbr 7969 | . 2 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5089 Rel wrel 5619 ‘cfv 6477 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 Func cfunc 17753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-func 17757 |
| This theorem is referenced by: func0g2 49101 idfu1stalem 49111 idfu2nda 49114 cofid1a 49123 cofid2a 49124 cofidvala 49127 cofidf2a 49128 cofidf1a 49129 oppfoppc2 49153 funcoppc4 49155 2oppffunc 49157 cofuoppf 49161 idfth 49169 idsubc 49171 uppropd 49192 uptrlem2 49222 uptra 49226 uptrar 49227 uobeqw 49230 uobeq 49231 uptr2a 49233 natoppfb 49242 diag1f1 49318 diag2f1 49320 fuco11b 49348 fucocolem1 49364 fucocolem2 49365 fucocolem3 49366 fucocolem4 49367 fucoco 49368 fucolid 49372 fucorid 49373 fucorid2 49374 postcofval 49375 postcofcl 49376 precofval 49378 precofval2 49380 precofcl 49381 prcoftposcurfucoa 49395 prcof1 49399 prcof2a 49400 prcof2 49401 prcof22a 49403 prcofdiag1 49404 prcofdiag 49405 fucoppclem 49418 fucoppcid 49419 fucoppcco 49420 oppfdiag1 49425 oppfdiag 49427 isinito2lem 49509 termcfuncval 49543 diag1f1olem 49544 diagffth 49549 funcsn 49552 cofuterm 49556 uobeqterm 49557 isinito4 49558 lanval 49630 ranval 49631 lanup 49652 ranup 49653 lmdpropd 49668 cmdpropd 49669 islmd 49676 iscmd 49677 lmddu 49678 termolmd 49681 lmdran 49682 cmdlan 49683 |
| Copyright terms: Public domain | W3C validator |