Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  func1st2nd Structured version   Visualization version   GIF version

Theorem func1st2nd 48936
Description: Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025.)
Hypothesis
Ref Expression
func1st2nd.1 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
Assertion
Ref Expression
func1st2nd (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))

Proof of Theorem func1st2nd
StepHypRef Expression
1 relfunc 17862 . 2 Rel (𝐶 Func 𝐷)
2 func1st2nd.1 . 2 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
3 1st2ndbr 8036 . 2 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
41, 2, 3sylancr 587 1 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5117  Rel wrel 5657  cfv 6528  (class class class)co 7400  1st c1st 7981  2nd c2nd 7982   Func cfunc 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-func 17858
This theorem is referenced by:  func0g2  48948  diag1f1  49081  diag2f1  49083  prcoftposcurfucoa  49157  prcof1  49161  prcof2a  49162  prcof2  49163  prcof22a  49165  isinito2lem  49244  termcfuncval  49278  diag1f1olem  49279  diagffth  49284  lanval  49355  ranval  49356  lanup  49376  ranup  49377
  Copyright terms: Public domain W3C validator