| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > func1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| func1st2nd.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| func1st2nd | ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17824 | . 2 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | func1st2nd.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2ndbr 8021 | . 2 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 Func cfunc 17816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-func 17820 |
| This theorem is referenced by: func0g2 49076 idfu1stalem 49086 idfu2nda 49089 cofid1a 49098 cofid2a 49099 cofidvala 49102 cofidf2a 49103 cofidf1a 49104 oppfoppc2 49128 funcoppc4 49130 2oppffunc 49132 cofuoppf 49136 idfth 49144 idsubc 49146 uppropd 49167 uptrlem2 49197 uptra 49201 uptrar 49202 uobeqw 49205 uobeq 49206 uptr2a 49208 natoppfb 49217 diag1f1 49293 diag2f1 49295 fuco11b 49323 fucocolem1 49339 fucocolem2 49340 fucocolem3 49341 fucocolem4 49342 fucoco 49343 fucolid 49347 fucorid 49348 fucorid2 49349 postcofval 49350 postcofcl 49351 precofval 49353 precofval2 49355 precofcl 49356 prcoftposcurfucoa 49370 prcof1 49374 prcof2a 49375 prcof2 49376 prcof22a 49378 prcofdiag1 49379 prcofdiag 49380 fucoppclem 49393 fucoppcid 49394 fucoppcco 49395 oppfdiag1 49400 oppfdiag 49402 isinito2lem 49484 termcfuncval 49518 diag1f1olem 49519 diagffth 49524 funcsn 49527 cofuterm 49531 uobeqterm 49532 isinito4 49533 lanval 49605 ranval 49606 lanup 49627 ranup 49628 lmdpropd 49643 cmdpropd 49644 islmd 49651 iscmd 49652 lmddu 49653 termolmd 49656 lmdran 49657 cmdlan 49658 |
| Copyright terms: Public domain | W3C validator |