| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > func1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| func1st2nd.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| func1st2nd | ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17775 | . 2 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | func1st2nd.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2ndbr 7980 | . 2 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5093 Rel wrel 5624 ‘cfv 6487 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 Func cfunc 17767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-func 17771 |
| This theorem is referenced by: func0g2 49196 idfu1stalem 49206 idfu2nda 49209 cofid1a 49218 cofid2a 49219 cofidvala 49222 cofidf2a 49223 cofidf1a 49224 oppfoppc2 49248 funcoppc4 49250 2oppffunc 49252 cofuoppf 49256 idfth 49264 idsubc 49266 uppropd 49287 uptrlem2 49317 uptra 49321 uptrar 49322 uobeqw 49325 uobeq 49326 uptr2a 49328 natoppfb 49337 diag1f1 49413 diag2f1 49415 fuco11b 49443 fucocolem1 49459 fucocolem2 49460 fucocolem3 49461 fucocolem4 49462 fucoco 49463 fucolid 49467 fucorid 49468 fucorid2 49469 postcofval 49470 postcofcl 49471 precofval 49473 precofval2 49475 precofcl 49476 prcoftposcurfucoa 49490 prcof1 49494 prcof2a 49495 prcof2 49496 prcof22a 49498 prcofdiag1 49499 prcofdiag 49500 fucoppclem 49513 fucoppcid 49514 fucoppcco 49515 oppfdiag1 49520 oppfdiag 49522 isinito2lem 49604 termcfuncval 49638 diag1f1olem 49639 diagffth 49644 funcsn 49647 cofuterm 49651 uobeqterm 49652 isinito4 49653 lanval 49725 ranval 49726 lanup 49747 ranup 49748 lmdpropd 49763 cmdpropd 49764 islmd 49771 iscmd 49772 lmddu 49773 termolmd 49776 lmdran 49777 cmdlan 49778 |
| Copyright terms: Public domain | W3C validator |