| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > func1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the functor predicate with separated parts. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| func1st2nd.1 | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| Ref | Expression |
|---|---|
| func1st2nd | ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17880 | . 2 ⊢ Rel (𝐶 Func 𝐷) | |
| 2 | func1st2nd.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 3 | 1st2ndbr 8046 | . 2 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) | |
| 4 | 1, 2, 3 | sylancr 587 | 1 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5124 Rel wrel 5664 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 Func cfunc 17872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-func 17876 |
| This theorem is referenced by: func0g2 49022 idfu1stalem 49026 idfu2nda 49029 oppfoppc2 49052 funcoppc4 49054 idfth 49065 idsubc 49066 diag1f1 49185 diag2f1 49187 fuco11b 49215 fucocolem1 49231 fucocolem2 49232 fucocolem3 49233 fucocolem4 49234 fucoco 49235 fucolid 49239 fucorid 49240 fucorid2 49241 postcofval 49242 postcofcl 49243 precofval 49245 precofval2 49247 precofcl 49248 prcoftposcurfucoa 49261 prcof1 49265 prcof2a 49266 prcof2 49267 prcof22a 49269 isinito2lem 49350 termcfuncval 49384 diag1f1olem 49385 diagffth 49390 lanval 49461 ranval 49462 lanup 49482 ranup 49483 islmd 49502 iscmd 49503 |
| Copyright terms: Public domain | W3C validator |