Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resccat Structured version   Visualization version   GIF version

Theorem resccat 48935
Description: A class 𝐶 restricted by the hom-sets of another set 𝐸, whose base is a subset of the base of 𝐶 and whose composition is compatible with 𝐶, is a category iff 𝐸 is a category. Note that the compatibility condition "resccat.1" can be weakened by removing 𝑥𝑆 because 𝑓 ∈ (𝑥𝐽𝑦) implies these. (Contributed by Zhi Wang, 6-Nov-2025.)
Hypotheses
Ref Expression
resccat.d 𝐷 = (𝐶cat 𝐽)
resccat.b 𝐵 = (Base‘𝐶)
resccat.s 𝑆 = (Base‘𝐸)
resccat.j 𝐽 = (Homf𝐸)
resccat.x · = (comp‘𝐶)
resccat.xb = (comp‘𝐸)
resccat.1 (((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
resccat.e (𝜑𝐸𝑉)
resccat.ss (𝜑𝑆𝐵)
Assertion
Ref Expression
resccat (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
Distinct variable groups:   ,𝑓,𝑔,𝑥,𝑦   𝐷,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐸,𝑔,𝑧   𝑔,𝐽   𝑆,𝑓,𝑔,𝑥,𝑦,𝑧   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑓,𝑔)   (𝑧)   · (𝑥,𝑦,𝑧,𝑓,𝑔)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑧,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem resccat
Dummy variables 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resccat.d . . 3 𝐷 = (𝐶cat 𝐽)
2 resccat.b . . 3 𝐵 = (Base‘𝐶)
3 resccat.s . . 3 𝑆 = (Base‘𝐸)
4 resccat.j . . 3 𝐽 = (Homf𝐸)
5 resccat.x . . 3 · = (comp‘𝐶)
6 resccat.xb . . 3 = (comp‘𝐸)
7 resccat.1 . . . 4 (((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
87adantllr 719 . . 3 ((((𝜑𝐶 ∈ V) ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦 𝑧)𝑓))
9 resccat.e . . . 4 (𝜑𝐸𝑉)
109adantr 480 . . 3 ((𝜑𝐶 ∈ V) → 𝐸𝑉)
11 resccat.ss . . . 4 (𝜑𝑆𝐵)
1211adantr 480 . . 3 ((𝜑𝐶 ∈ V) → 𝑆𝐵)
13 simpr 484 . . 3 ((𝜑𝐶 ∈ V) → 𝐶 ∈ V)
141, 2, 3, 4, 5, 6, 8, 10, 12, 13resccatlem 48934 . 2 ((𝜑𝐶 ∈ V) → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
15 df-resc 17811 . . . . . . . 8 cat = (𝑐 ∈ V, ∈ V ↦ ((𝑐s dom dom ) sSet ⟨(Hom ‘ndx), ⟩))
1615reldmmpo 7536 . . . . . . 7 Rel dom ↾cat
1716ovprc1 7439 . . . . . 6 𝐶 ∈ V → (𝐶cat 𝐽) = ∅)
181, 17eqtrid 2781 . . . . 5 𝐶 ∈ V → 𝐷 = ∅)
19 0cat 17688 . . . . 5 ∅ ∈ Cat
2018, 19eqeltrdi 2841 . . . 4 𝐶 ∈ V → 𝐷 ∈ Cat)
2120adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐷 ∈ Cat)
22 fvprc 6865 . . . . . . 7 𝐶 ∈ V → (Base‘𝐶) = ∅)
232, 22eqtrid 2781 . . . . . 6 𝐶 ∈ V → 𝐵 = ∅)
24 sseq0 4376 . . . . . 6 ((𝑆𝐵𝐵 = ∅) → 𝑆 = ∅)
2511, 23, 24syl2an 596 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝑆 = ∅)
2625, 3eqtr3di 2784 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ∅ = (Base‘𝐸))
27 0catg 17687 . . . 4 ((𝐸𝑉 ∧ ∅ = (Base‘𝐸)) → 𝐸 ∈ Cat)
289, 26, 27syl2an2r 685 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐸 ∈ Cat)
2921, 282thd 265 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
3014, 29pm2.61dan 812 1 (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3457  wss 3924  c0 4306  cop 4605  dom cdm 5652  cfv 6528  (class class class)co 7400   sSet csts 17169  ndxcnx 17199  Basecbs 17215  s cress 17238  Hom chom 17269  compcco 17270  Catccat 17663  Homf chomf 17665  cat cresc 17808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-hom 17282  df-cco 17283  df-cat 17667  df-homf 17669  df-comf 17670  df-resc 17811
This theorem is referenced by:  setc1onsubc  49340
  Copyright terms: Public domain W3C validator