| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resccat | Structured version Visualization version GIF version | ||
| Description: A class 𝐶 restricted by the hom-sets of another set 𝐸, whose base is a subset of the base of 𝐶 and whose composition is compatible with 𝐶, is a category iff 𝐸 is a category. Note that the compatibility condition "resccat.1" can be weakened by removing 𝑥 ∈ 𝑆 because 𝑓 ∈ (𝑥𝐽𝑦) implies these. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| resccat.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
| resccat.b | ⊢ 𝐵 = (Base‘𝐶) |
| resccat.s | ⊢ 𝑆 = (Base‘𝐸) |
| resccat.j | ⊢ 𝐽 = (Homf ‘𝐸) |
| resccat.x | ⊢ · = (comp‘𝐶) |
| resccat.xb | ⊢ ∙ = (comp‘𝐸) |
| resccat.1 | ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) |
| resccat.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| resccat.ss | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| resccat | ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resccat.d | . . 3 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
| 2 | resccat.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | resccat.s | . . 3 ⊢ 𝑆 = (Base‘𝐸) | |
| 4 | resccat.j | . . 3 ⊢ 𝐽 = (Homf ‘𝐸) | |
| 5 | resccat.x | . . 3 ⊢ · = (comp‘𝐶) | |
| 6 | resccat.xb | . . 3 ⊢ ∙ = (comp‘𝐸) | |
| 7 | resccat.1 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) | |
| 8 | 7 | adantllr 719 | . . 3 ⊢ ((((𝜑 ∧ 𝐶 ∈ V) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) |
| 9 | resccat.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → 𝐸 ∈ 𝑉) |
| 11 | resccat.ss | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → 𝑆 ⊆ 𝐵) |
| 13 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → 𝐶 ∈ V) | |
| 14 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 13 | resccatlem 49068 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| 15 | df-resc 17718 | . . . . . . . 8 ⊢ ↾cat = (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉)) | |
| 16 | 15 | reldmmpo 7483 | . . . . . . 7 ⊢ Rel dom ↾cat |
| 17 | 16 | ovprc1 7388 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (𝐶 ↾cat 𝐽) = ∅) |
| 18 | 1, 17 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝐷 = ∅) |
| 19 | 0cat 17595 | . . . . 5 ⊢ ∅ ∈ Cat | |
| 20 | 18, 19 | eqeltrdi 2836 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐷 ∈ Cat) |
| 21 | 20 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐷 ∈ Cat) |
| 22 | fvprc 6814 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
| 23 | 2, 22 | eqtrid 2776 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → 𝐵 = ∅) |
| 24 | sseq0 4354 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝑆 = ∅) | |
| 25 | 11, 23, 24 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝑆 = ∅) |
| 26 | 25, 3 | eqtr3di 2779 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → ∅ = (Base‘𝐸)) |
| 27 | 0catg 17594 | . . . 4 ⊢ ((𝐸 ∈ 𝑉 ∧ ∅ = (Base‘𝐸)) → 𝐸 ∈ Cat) | |
| 28 | 9, 26, 27 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐸 ∈ Cat) |
| 29 | 21, 28 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| 30 | 14, 29 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 〈cop 4583 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 sSet csts 17074 ndxcnx 17104 Basecbs 17120 ↾s cress 17141 Hom chom 17172 compcco 17173 Catccat 17570 Homf chomf 17572 ↾cat cresc 17715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-hom 17185 df-cco 17186 df-cat 17574 df-homf 17576 df-comf 17577 df-resc 17718 |
| This theorem is referenced by: setc1onsubc 49597 |
| Copyright terms: Public domain | W3C validator |