| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resccat | Structured version Visualization version GIF version | ||
| Description: A class 𝐶 restricted by the hom-sets of another set 𝐸, whose base is a subset of the base of 𝐶 and whose composition is compatible with 𝐶, is a category iff 𝐸 is a category. Note that the compatibility condition "resccat.1" can be weakened by removing 𝑥 ∈ 𝑆 because 𝑓 ∈ (𝑥𝐽𝑦) implies these. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| resccat.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
| resccat.b | ⊢ 𝐵 = (Base‘𝐶) |
| resccat.s | ⊢ 𝑆 = (Base‘𝐸) |
| resccat.j | ⊢ 𝐽 = (Homf ‘𝐸) |
| resccat.x | ⊢ · = (comp‘𝐶) |
| resccat.xb | ⊢ ∙ = (comp‘𝐸) |
| resccat.1 | ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) |
| resccat.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| resccat.ss | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| resccat | ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resccat.d | . . 3 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
| 2 | resccat.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | resccat.s | . . 3 ⊢ 𝑆 = (Base‘𝐸) | |
| 4 | resccat.j | . . 3 ⊢ 𝐽 = (Homf ‘𝐸) | |
| 5 | resccat.x | . . 3 ⊢ · = (comp‘𝐶) | |
| 6 | resccat.xb | . . 3 ⊢ ∙ = (comp‘𝐸) | |
| 7 | resccat.1 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) | |
| 8 | 7 | adantllr 719 | . . 3 ⊢ ((((𝜑 ∧ 𝐶 ∈ V) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) |
| 9 | resccat.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → 𝐸 ∈ 𝑉) |
| 11 | resccat.ss | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → 𝑆 ⊆ 𝐵) |
| 13 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → 𝐶 ∈ V) | |
| 14 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 13 | resccatlem 48934 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| 15 | df-resc 17811 | . . . . . . . 8 ⊢ ↾cat = (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉)) | |
| 16 | 15 | reldmmpo 7536 | . . . . . . 7 ⊢ Rel dom ↾cat |
| 17 | 16 | ovprc1 7439 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (𝐶 ↾cat 𝐽) = ∅) |
| 18 | 1, 17 | eqtrid 2781 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝐷 = ∅) |
| 19 | 0cat 17688 | . . . . 5 ⊢ ∅ ∈ Cat | |
| 20 | 18, 19 | eqeltrdi 2841 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐷 ∈ Cat) |
| 21 | 20 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐷 ∈ Cat) |
| 22 | fvprc 6865 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
| 23 | 2, 22 | eqtrid 2781 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → 𝐵 = ∅) |
| 24 | sseq0 4376 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝑆 = ∅) | |
| 25 | 11, 23, 24 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝑆 = ∅) |
| 26 | 25, 3 | eqtr3di 2784 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → ∅ = (Base‘𝐸)) |
| 27 | 0catg 17687 | . . . 4 ⊢ ((𝐸 ∈ 𝑉 ∧ ∅ = (Base‘𝐸)) → 𝐸 ∈ Cat) | |
| 28 | 9, 26, 27 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐸 ∈ Cat) |
| 29 | 21, 28 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| 30 | 14, 29 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ⊆ wss 3924 ∅c0 4306 〈cop 4605 dom cdm 5652 ‘cfv 6528 (class class class)co 7400 sSet csts 17169 ndxcnx 17199 Basecbs 17215 ↾s cress 17238 Hom chom 17269 compcco 17270 Catccat 17663 Homf chomf 17665 ↾cat cresc 17808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-hom 17282 df-cco 17283 df-cat 17667 df-homf 17669 df-comf 17670 df-resc 17811 |
| This theorem is referenced by: setc1onsubc 49340 |
| Copyright terms: Public domain | W3C validator |