| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resccat | Structured version Visualization version GIF version | ||
| Description: A class 𝐶 restricted by the hom-sets of another set 𝐸, whose base is a subset of the base of 𝐶 and whose composition is compatible with 𝐶, is a category iff 𝐸 is a category. Note that the compatibility condition "resccat.1" can be weakened by removing 𝑥 ∈ 𝑆 because 𝑓 ∈ (𝑥𝐽𝑦) implies these. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| resccat.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐽) |
| resccat.b | ⊢ 𝐵 = (Base‘𝐶) |
| resccat.s | ⊢ 𝑆 = (Base‘𝐸) |
| resccat.j | ⊢ 𝐽 = (Homf ‘𝐸) |
| resccat.x | ⊢ · = (comp‘𝐶) |
| resccat.xb | ⊢ ∙ = (comp‘𝐸) |
| resccat.1 | ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) |
| resccat.e | ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| resccat.ss | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| resccat | ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resccat.d | . . 3 ⊢ 𝐷 = (𝐶 ↾cat 𝐽) | |
| 2 | resccat.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | resccat.s | . . 3 ⊢ 𝑆 = (Base‘𝐸) | |
| 4 | resccat.j | . . 3 ⊢ 𝐽 = (Homf ‘𝐸) | |
| 5 | resccat.x | . . 3 ⊢ · = (comp‘𝐶) | |
| 6 | resccat.xb | . . 3 ⊢ ∙ = (comp‘𝐸) | |
| 7 | resccat.1 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) | |
| 8 | 7 | adantllr 719 | . . 3 ⊢ ((((𝜑 ∧ 𝐶 ∈ V) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ (𝑓 ∈ (𝑥𝐽𝑦) ∧ 𝑔 ∈ (𝑦𝐽𝑧))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 ∙ 𝑧)𝑓)) |
| 9 | resccat.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑉) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → 𝐸 ∈ 𝑉) |
| 11 | resccat.ss | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → 𝑆 ⊆ 𝐵) |
| 13 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → 𝐶 ∈ V) | |
| 14 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 13 | resccatlem 49052 | . 2 ⊢ ((𝜑 ∧ 𝐶 ∈ V) → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| 15 | df-resc 17779 | . . . . . . . 8 ⊢ ↾cat = (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉)) | |
| 16 | 15 | reldmmpo 7525 | . . . . . . 7 ⊢ Rel dom ↾cat |
| 17 | 16 | ovprc1 7428 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (𝐶 ↾cat 𝐽) = ∅) |
| 18 | 1, 17 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝐷 = ∅) |
| 19 | 0cat 17656 | . . . . 5 ⊢ ∅ ∈ Cat | |
| 20 | 18, 19 | eqeltrdi 2837 | . . . 4 ⊢ (¬ 𝐶 ∈ V → 𝐷 ∈ Cat) |
| 21 | 20 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐷 ∈ Cat) |
| 22 | fvprc 6852 | . . . . . . 7 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
| 23 | 2, 22 | eqtrid 2777 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → 𝐵 = ∅) |
| 24 | sseq0 4368 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝐵 = ∅) → 𝑆 = ∅) | |
| 25 | 11, 23, 24 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝑆 = ∅) |
| 26 | 25, 3 | eqtr3di 2780 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → ∅ = (Base‘𝐸)) |
| 27 | 0catg 17655 | . . . 4 ⊢ ((𝐸 ∈ 𝑉 ∧ ∅ = (Base‘𝐸)) → 𝐸 ∈ Cat) | |
| 28 | 9, 26, 27 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐸 ∈ Cat) |
| 29 | 21, 28 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| 30 | 14, 29 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐷 ∈ Cat ↔ 𝐸 ∈ Cat)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 ∅c0 4298 〈cop 4597 dom cdm 5640 ‘cfv 6513 (class class class)co 7389 sSet csts 17139 ndxcnx 17169 Basecbs 17185 ↾s cress 17206 Hom chom 17237 compcco 17238 Catccat 17631 Homf chomf 17633 ↾cat cresc 17776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-hom 17250 df-cco 17251 df-cat 17635 df-homf 17637 df-comf 17638 df-resc 17779 |
| This theorem is referenced by: setc1onsubc 49581 |
| Copyright terms: Public domain | W3C validator |