Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid5 Structured version   Visualization version   GIF version

Theorem bj-elid5 37135
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid5 (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) = (2nd𝐴)))

Proof of Theorem bj-elid5
StepHypRef Expression
1 reli 5850 . . . 4 Rel I
2 df-rel 5707 . . . 4 (Rel I ↔ I ⊆ (V × V))
31, 2mpbi 230 . . 3 I ⊆ (V × V)
43sseli 4004 . 2 (𝐴 ∈ I → 𝐴 ∈ (V × V))
5 bj-elid4 37134 . 2 (𝐴 ∈ (V × V) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
64, 5biadanii 821 1 (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) = (2nd𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   I cid 5592   × cxp 5698  Rel wrel 5705  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator