Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid5 Structured version   Visualization version   GIF version

Theorem bj-elid5 37147
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid5 (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) = (2nd𝐴)))

Proof of Theorem bj-elid5
StepHypRef Expression
1 reli 5769 . . . 4 Rel I
2 df-rel 5626 . . . 4 (Rel I ↔ I ⊆ (V × V))
31, 2mpbi 230 . . 3 I ⊆ (V × V)
43sseli 3931 . 2 (𝐴 ∈ I → 𝐴 ∈ (V × V))
5 bj-elid4 37146 . 2 (𝐴 ∈ (V × V) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
64, 5biadanii 821 1 (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) = (2nd𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903   I cid 5513   × cxp 5617  Rel wrel 5624  cfv 6482  1st c1st 7922  2nd c2nd 7923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fv 6490  df-1st 7924  df-2nd 7925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator