| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elid5 | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-elid5 | ⊢ (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 5791 | . . . 4 ⊢ Rel I | |
| 2 | df-rel 5647 | . . . 4 ⊢ (Rel I ↔ I ⊆ (V × V)) | |
| 3 | 1, 2 | mpbi 230 | . . 3 ⊢ I ⊆ (V × V) |
| 4 | 3 | sseli 3944 | . 2 ⊢ (𝐴 ∈ I → 𝐴 ∈ (V × V)) |
| 5 | bj-elid4 37151 | . 2 ⊢ (𝐴 ∈ (V × V) → (𝐴 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴))) | |
| 6 | 4, 5 | biadanii 821 | 1 ⊢ (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 I cid 5534 × cxp 5638 Rel wrel 5645 ‘cfv 6513 1st c1st 7968 2nd c2nd 7969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fv 6521 df-1st 7970 df-2nd 7971 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |