Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid5 Structured version   Visualization version   GIF version

Theorem bj-elid5 37152
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-elid5 (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) = (2nd𝐴)))

Proof of Theorem bj-elid5
StepHypRef Expression
1 reli 5839 . . . 4 Rel I
2 df-rel 5696 . . . 4 (Rel I ↔ I ⊆ (V × V))
31, 2mpbi 230 . . 3 I ⊆ (V × V)
43sseli 3991 . 2 (𝐴 ∈ I → 𝐴 ∈ (V × V))
5 bj-elid4 37151 . 2 (𝐴 ∈ (V × V) → (𝐴 ∈ I ↔ (1st𝐴) = (2nd𝐴)))
64, 5biadanii 822 1 (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st𝐴) = (2nd𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963   I cid 5582   × cxp 5687  Rel wrel 5694  cfv 6563  1st c1st 8011  2nd c2nd 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-1st 8013  df-2nd 8014
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator