| Step | Hyp | Ref
| Expression |
| 1 | | o1res 15596 |
. 2
⊢ (𝐹 ∈ 𝑂(1) →
(𝐹 ↾ (𝐵[,)+∞)) ∈
𝑂(1)) |
| 2 | | rlimresb.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| 3 | 2 | feqmptd 6977 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
| 4 | 3 | reseq1d 5996 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐵[,)+∞))) |
| 5 | | resmpt3 6056 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) |
| 6 | 4, 5 | eqtrdi 2793 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥))) |
| 7 | 6 | eleq1d 2826 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ 𝑂(1) ↔
(𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) ∈ 𝑂(1))) |
| 8 | | inss1 4237 |
. . . . . 6
⊢ (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴 |
| 9 | | rlimresb.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 10 | 8, 9 | sstrid 3995 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆
ℝ) |
| 11 | | elinel1 4201 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥 ∈ 𝐴) |
| 12 | | ffvelcdm 7101 |
. . . . . 6
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 13 | 2, 11, 12 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹‘𝑥) ∈ ℂ) |
| 14 | 10, 13 | elo1mpt 15570 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
| 15 | | elin 3967 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵[,)+∞))) |
| 16 | 15 | imbi1i 349 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
| 17 | | impexp 450 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)))) |
| 18 | 16, 17 | bitri 275 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)))) |
| 19 | | impexp 450 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) → (abs‘(𝐹‘𝑥)) ≤ 𝑧) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
| 20 | | rlimresb.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 21 | 20 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 22 | 9 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐴 ⊆ ℝ) |
| 23 | 22 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 24 | | elicopnf 13485 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥))) |
| 25 | 24 | baibd 539 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ 𝑥)) |
| 26 | 21, 23, 25 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ 𝑥)) |
| 27 | 26 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) ↔ (𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
| 28 | | simplrl 777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ) |
| 29 | | maxle 13233 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
| 30 | 21, 28, 23, 29 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
| 31 | 27, 30 | bitr4d 282 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) ↔ if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥)) |
| 32 | 31 | imbi1d 341 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) → (abs‘(𝐹‘𝑥)) ≤ 𝑧) ↔ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
| 33 | 19, 32 | bitr3id 285 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
| 34 | 33 | pm5.74da 804 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ 𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) ↔ (𝑥 ∈ 𝐴 → (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)))) |
| 35 | 18, 34 | bitrid 283 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ (𝑥 ∈ 𝐴 → (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)))) |
| 36 | 35 | ralbidv2 3174 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) ↔ ∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
| 37 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐹:𝐴⟶ℂ) |
| 38 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ) |
| 39 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐵 ∈ ℝ) |
| 40 | 38, 39 | ifcld 4572 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ∈ ℝ) |
| 41 | | simprr 773 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑧 ∈ ℝ) |
| 42 | | elo12r 15564 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) → 𝐹 ∈ 𝑂(1)) |
| 43 | 42 | 3expia 1122 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) → 𝐹 ∈ 𝑂(1))) |
| 44 | 37, 22, 40, 41, 43 | syl22anc 839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) → 𝐹 ∈ 𝑂(1))) |
| 45 | 36, 44 | sylbid 240 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) → 𝐹 ∈ 𝑂(1))) |
| 46 | 45 | rexlimdvva 3213 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) → 𝐹 ∈ 𝑂(1))) |
| 47 | 14, 46 | sylbid 240 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) ∈ 𝑂(1) → 𝐹 ∈
𝑂(1))) |
| 48 | 7, 47 | sylbid 240 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ 𝑂(1) →
𝐹 ∈
𝑂(1))) |
| 49 | 1, 48 | impbid2 226 |
1
⊢ (𝜑 → (𝐹 ∈ 𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈
𝑂(1))) |