Step | Hyp | Ref
| Expression |
1 | | o1res 15121 |
. 2
⊢ (𝐹 ∈ 𝑂(1) →
(𝐹 ↾ (𝐵[,)+∞)) ∈
𝑂(1)) |
2 | | rlimresb.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
3 | 2 | feqmptd 6780 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) |
4 | 3 | reseq1d 5850 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐵[,)+∞))) |
5 | | resmpt3 5906 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥)) ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) |
6 | 4, 5 | eqtrdi 2794 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥))) |
7 | 6 | eleq1d 2822 |
. . 3
⊢ (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ 𝑂(1) ↔
(𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) ∈ 𝑂(1))) |
8 | | inss1 4143 |
. . . . . 6
⊢ (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴 |
9 | | rlimresb.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
10 | 8, 9 | sstrid 3912 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆
ℝ) |
11 | | elinel1 4109 |
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥 ∈ 𝐴) |
12 | | ffvelrn 6902 |
. . . . . 6
⊢ ((𝐹:𝐴⟶ℂ ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
13 | 2, 11, 12 | syl2an 599 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹‘𝑥) ∈ ℂ) |
14 | 10, 13 | elo1mpt 15095 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
15 | | elin 3882 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵[,)+∞))) |
16 | 15 | imbi1i 353 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
17 | | impexp 454 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)))) |
18 | 16, 17 | bitri 278 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)))) |
19 | | impexp 454 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) → (abs‘(𝐹‘𝑥)) ≤ 𝑧) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
20 | | rlimresb.3 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ∈ ℝ) |
21 | 20 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
22 | 9 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐴 ⊆ ℝ) |
23 | 22 | sselda 3901 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
24 | | elicopnf 13033 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥))) |
25 | 24 | baibd 543 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ 𝑥)) |
26 | 21, 23, 25 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵 ≤ 𝑥)) |
27 | 26 | anbi1d 633 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) ↔ (𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
28 | | simplrl 777 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ ℝ) |
29 | | maxle 12781 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) →
(if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
30 | 21, 28, 23, 29 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥))) |
31 | 27, 30 | bitr4d 285 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) ↔ if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥)) |
32 | 31 | imbi1d 345 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦 ≤ 𝑥) → (abs‘(𝐹‘𝑥)) ≤ 𝑧) ↔ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
33 | 19, 32 | bitr3id 288 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
34 | 33 | pm5.74da 804 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ 𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) ↔ (𝑥 ∈ 𝐴 → (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)))) |
35 | 18, 34 | syl5bb 286 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) ↔ (𝑥 ∈ 𝐴 → (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)))) |
36 | 35 | ralbidv2 3116 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) ↔ ∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧))) |
37 | 2 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐹:𝐴⟶ℂ) |
38 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ) |
39 | 20 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐵 ∈ ℝ) |
40 | 38, 39 | ifcld 4485 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ∈ ℝ) |
41 | | simprr 773 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑧 ∈ ℝ) |
42 | | elo12r 15089 |
. . . . . . . 8
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧)) → 𝐹 ∈ 𝑂(1)) |
43 | 42 | 3expia 1123 |
. . . . . . 7
⊢ (((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) → 𝐹 ∈ 𝑂(1))) |
44 | 37, 22, 40, 41, 43 | syl22anc 839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ 𝐴 (if(𝐵 ≤ 𝑦, 𝑦, 𝐵) ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) → 𝐹 ∈ 𝑂(1))) |
45 | 36, 44 | sylbid 243 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) → 𝐹 ∈ 𝑂(1))) |
46 | 45 | rexlimdvva 3213 |
. . . 4
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦 ≤ 𝑥 → (abs‘(𝐹‘𝑥)) ≤ 𝑧) → 𝐹 ∈ 𝑂(1))) |
47 | 14, 46 | sylbid 243 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹‘𝑥)) ∈ 𝑂(1) → 𝐹 ∈
𝑂(1))) |
48 | 7, 47 | sylbid 243 |
. 2
⊢ (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ 𝑂(1) →
𝐹 ∈
𝑂(1))) |
49 | 1, 48 | impbid2 229 |
1
⊢ (𝜑 → (𝐹 ∈ 𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈
𝑂(1))) |