MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1resb Structured version   Visualization version   GIF version

Theorem lo1resb 14974
Description: The restriction of a function to an unbounded-above interval is eventually upper bounded iff the original is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1resb.1 (𝜑𝐹:𝐴⟶ℝ)
lo1resb.2 (𝜑𝐴 ⊆ ℝ)
lo1resb.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
lo1resb (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1)))

Proof of Theorem lo1resb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1res 14969 . 2 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1))
2 lo1resb.1 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ)
32feqmptd 6725 . . . . . 6 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
43reseq1d 5826 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐵[,)+∞)))
5 resmpt3 5882 . . . . 5 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥))
64, 5eqtrdi 2809 . . . 4 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
76eleq1d 2836 . . 3 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1)))
8 inss1 4135 . . . . . 6 (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴
9 lo1resb.2 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
108, 9sstrid 3905 . . . . 5 (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
11 elinel1 4102 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥𝐴)
12 ffvelrn 6845 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
132, 11, 12syl2an 598 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹𝑥) ∈ ℝ)
1410, 13ello1mpt 14931 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
15 elin 3876 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐵[,)+∞)))
1615imbi1i 353 . . . . . . . . 9 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ ((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
17 impexp 454 . . . . . . . . 9 (((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))))
1816, 17bitri 278 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))))
19 impexp 454 . . . . . . . . . 10 (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) → (𝐹𝑥) ≤ 𝑧) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
20 lo1resb.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
2120ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
229adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2322sselda 3894 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
24 elicopnf 12882 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
2524baibd 543 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵𝑥))
2621, 23, 25syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵𝑥))
2726anbi1d 632 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) ↔ (𝐵𝑥𝑦𝑥)))
28 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
29 maxle 12630 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵𝑥𝑦𝑥)))
3021, 28, 23, 29syl3anc 1368 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵𝑥𝑦𝑥)))
3127, 30bitr4d 285 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) ↔ if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥))
3231imbi1d 345 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) → (𝐹𝑥) ≤ 𝑧) ↔ (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
3319, 32bitr3id 288 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
3433pm5.74da 803 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))) ↔ (𝑥𝐴 → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧))))
3518, 34syl5bb 286 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧))))
3635ralbidv2 3124 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) ↔ ∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
372adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐹:𝐴⟶ℝ)
38 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ)
3920adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐵 ∈ ℝ)
4038, 39ifcld 4469 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ)
41 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑧 ∈ ℝ)
42 ello12r 14927 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)) → 𝐹 ∈ ≤𝑂(1))
43423expia 1118 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4437, 22, 40, 41, 43syl22anc 837 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4536, 44sylbid 243 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4645rexlimdvva 3218 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4714, 46sylbid 243 . . 3 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1) → 𝐹 ∈ ≤𝑂(1)))
487, 47sylbid 243 . 2 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) → 𝐹 ∈ ≤𝑂(1)))
491, 48impbid2 229 1 (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2111  wral 3070  wrex 3071  cin 3859  wss 3860  ifcif 4423   class class class wbr 5035  cmpt 5115  cres 5529  wf 6335  cfv 6339  (class class class)co 7155  cr 10579  +∞cpnf 10715  cle 10719  [,)cico 12786  ≤𝑂(1)clo1 14897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-pre-lttri 10654  ax-pre-lttrn 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-po 5446  df-so 5447  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8304  df-pm 8424  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-ico 12790  df-lo1 14901
This theorem is referenced by:  lo1eq  14978
  Copyright terms: Public domain W3C validator