Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1resb Structured version   Visualization version   GIF version

Theorem lo1resb 14974
 Description: The restriction of a function to an unbounded-above interval is eventually upper bounded iff the original is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1resb.1 (𝜑𝐹:𝐴⟶ℝ)
lo1resb.2 (𝜑𝐴 ⊆ ℝ)
lo1resb.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
lo1resb (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1)))

Proof of Theorem lo1resb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1res 14969 . 2 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1))
2 lo1resb.1 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ)
32feqmptd 6725 . . . . . 6 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
43reseq1d 5826 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐵[,)+∞)))
5 resmpt3 5882 . . . . 5 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥))
64, 5eqtrdi 2809 . . . 4 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
76eleq1d 2836 . . 3 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1)))
8 inss1 4135 . . . . . 6 (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴
9 lo1resb.2 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
108, 9sstrid 3905 . . . . 5 (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
11 elinel1 4102 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥𝐴)
12 ffvelrn 6845 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
132, 11, 12syl2an 598 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹𝑥) ∈ ℝ)
1410, 13ello1mpt 14931 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
15 elin 3876 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐵[,)+∞)))
1615imbi1i 353 . . . . . . . . 9 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ ((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
17 impexp 454 . . . . . . . . 9 (((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))))
1816, 17bitri 278 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))))
19 impexp 454 . . . . . . . . . 10 (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) → (𝐹𝑥) ≤ 𝑧) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
20 lo1resb.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
2120ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
229adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2322sselda 3894 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
24 elicopnf 12882 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
2524baibd 543 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵𝑥))
2621, 23, 25syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵𝑥))
2726anbi1d 632 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) ↔ (𝐵𝑥𝑦𝑥)))
28 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
29 maxle 12630 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵𝑥𝑦𝑥)))
3021, 28, 23, 29syl3anc 1368 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵𝑥𝑦𝑥)))
3127, 30bitr4d 285 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) ↔ if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥))
3231imbi1d 345 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) → (𝐹𝑥) ≤ 𝑧) ↔ (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
3319, 32bitr3id 288 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
3433pm5.74da 803 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))) ↔ (𝑥𝐴 → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧))))
3518, 34syl5bb 286 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧))))
3635ralbidv2 3124 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) ↔ ∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
372adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐹:𝐴⟶ℝ)
38 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ)
3920adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐵 ∈ ℝ)
4038, 39ifcld 4469 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ)
41 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑧 ∈ ℝ)
42 ello12r 14927 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)) → 𝐹 ∈ ≤𝑂(1))
43423expia 1118 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4437, 22, 40, 41, 43syl22anc 837 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4536, 44sylbid 243 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4645rexlimdvva 3218 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4714, 46sylbid 243 . . 3 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1) → 𝐹 ∈ ≤𝑂(1)))
487, 47sylbid 243 . 2 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) → 𝐹 ∈ ≤𝑂(1)))
491, 48impbid2 229 1 (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   ∩ cin 3859   ⊆ wss 3860  ifcif 4423   class class class wbr 5035   ↦ cmpt 5115   ↾ cres 5529  ⟶wf 6335  ‘cfv 6339  (class class class)co 7155  ℝcr 10579  +∞cpnf 10715   ≤ cle 10719  [,)cico 12786  ≤𝑂(1)clo1 14897 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-pre-lttri 10654  ax-pre-lttrn 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-po 5446  df-so 5447  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8304  df-pm 8424  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-ico 12790  df-lo1 14901 This theorem is referenced by:  lo1eq  14978
 Copyright terms: Public domain W3C validator