MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1resb Structured version   Visualization version   GIF version

Theorem lo1resb 15471
Description: The restriction of a function to an unbounded-above interval is eventually upper bounded iff the original is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
lo1resb.1 (𝜑𝐹:𝐴⟶ℝ)
lo1resb.2 (𝜑𝐴 ⊆ ℝ)
lo1resb.3 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
lo1resb (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1)))

Proof of Theorem lo1resb
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1res 15466 . 2 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1))
2 lo1resb.1 . . . . . . 7 (𝜑𝐹:𝐴⟶ℝ)
32feqmptd 6890 . . . . . 6 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
43reseq1d 5926 . . . . 5 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐵[,)+∞)))
5 resmpt3 5986 . . . . 5 ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥))
64, 5eqtrdi 2782 . . . 4 (𝜑 → (𝐹 ↾ (𝐵[,)+∞)) = (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)))
76eleq1d 2816 . . 3 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) ↔ (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1)))
8 inss1 4184 . . . . . 6 (𝐴 ∩ (𝐵[,)+∞)) ⊆ 𝐴
9 lo1resb.2 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
108, 9sstrid 3941 . . . . 5 (𝜑 → (𝐴 ∩ (𝐵[,)+∞)) ⊆ ℝ)
11 elinel1 4148 . . . . . 6 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → 𝑥𝐴)
12 ffvelcdm 7014 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
132, 11, 12syl2an 596 . . . . 5 ((𝜑𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))) → (𝐹𝑥) ∈ ℝ)
1410, 13ello1mpt 15428 . . . 4 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
15 elin 3913 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↔ (𝑥𝐴𝑥 ∈ (𝐵[,)+∞)))
1615imbi1i 349 . . . . . . . . 9 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ ((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
17 impexp 450 . . . . . . . . 9 (((𝑥𝐴𝑥 ∈ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))))
1816, 17bitri 275 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))))
19 impexp 450 . . . . . . . . . 10 (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) → (𝐹𝑥) ≤ 𝑧) ↔ (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)))
20 lo1resb.3 . . . . . . . . . . . . . . 15 (𝜑𝐵 ∈ ℝ)
2120ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
229adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐴 ⊆ ℝ)
2322sselda 3929 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
24 elicopnf 13345 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℝ → (𝑥 ∈ (𝐵[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐵𝑥)))
2524baibd 539 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵𝑥))
2621, 23, 25syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (𝑥 ∈ (𝐵[,)+∞) ↔ 𝐵𝑥))
2726anbi1d 631 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) ↔ (𝐵𝑥𝑦𝑥)))
28 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑦 ∈ ℝ)
29 maxle 13090 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵𝑥𝑦𝑥)))
3021, 28, 23, 29syl3anc 1373 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 ↔ (𝐵𝑥𝑦𝑥)))
3127, 30bitr4d 282 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) ↔ if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥))
3231imbi1d 341 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → (((𝑥 ∈ (𝐵[,)+∞) ∧ 𝑦𝑥) → (𝐹𝑥) ≤ 𝑧) ↔ (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
3319, 32bitr3id 285 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
3433pm5.74da 803 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥𝐴 → (𝑥 ∈ (𝐵[,)+∞) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧))) ↔ (𝑥𝐴 → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧))))
3518, 34bitrid 283 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) → (𝑦𝑥 → (𝐹𝑥) ≤ 𝑧)) ↔ (𝑥𝐴 → (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧))))
3635ralbidv2 3151 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) ↔ ∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)))
372adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐹:𝐴⟶ℝ)
38 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ)
3920adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝐵 ∈ ℝ)
4038, 39ifcld 4519 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ)
41 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 𝑧 ∈ ℝ)
42 ello12r 15424 . . . . . . . 8 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧)) → 𝐹 ∈ ≤𝑂(1))
43423expia 1121 . . . . . . 7 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (if(𝐵𝑦, 𝑦, 𝐵) ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4437, 22, 40, 41, 43syl22anc 838 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥𝐴 (if(𝐵𝑦, 𝑦, 𝐵) ≤ 𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4536, 44sylbid 240 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4645rexlimdvva 3189 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ ∀𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞))(𝑦𝑥 → (𝐹𝑥) ≤ 𝑧) → 𝐹 ∈ ≤𝑂(1)))
4714, 46sylbid 240 . . 3 (𝜑 → ((𝑥 ∈ (𝐴 ∩ (𝐵[,)+∞)) ↦ (𝐹𝑥)) ∈ ≤𝑂(1) → 𝐹 ∈ ≤𝑂(1)))
487, 47sylbid 240 . 2 (𝜑 → ((𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1) → 𝐹 ∈ ≤𝑂(1)))
491, 48impbid2 226 1 (𝜑 → (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ↾ (𝐵[,)+∞)) ∈ ≤𝑂(1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897  ifcif 4472   class class class wbr 5089  cmpt 5170  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  +∞cpnf 11143  cle 11147  [,)cico 13247  ≤𝑂(1)clo1 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251  df-lo1 15398
This theorem is referenced by:  lo1eq  15475
  Copyright terms: Public domain W3C validator