MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmptf Structured version   Visualization version   GIF version

Theorem resmptf 6059
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
resmptf.a 𝑥𝐴
resmptf.b 𝑥𝐵
Assertion
Ref Expression
resmptf (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))

Proof of Theorem resmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 resmpt 6057 . 2 (𝐵𝐴 → ((𝑦𝐴𝑦 / 𝑥𝐶) ↾ 𝐵) = (𝑦𝐵𝑦 / 𝑥𝐶))
2 resmptf.a . . . 4 𝑥𝐴
3 nfcv 2903 . . . 4 𝑦𝐴
4 nfcv 2903 . . . 4 𝑦𝐶
5 nfcsb1v 3933 . . . 4 𝑥𝑦 / 𝑥𝐶
6 csbeq1a 3922 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
72, 3, 4, 5, 6cbvmptf 5257 . . 3 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
87reseq1i 5996 . 2 ((𝑥𝐴𝐶) ↾ 𝐵) = ((𝑦𝐴𝑦 / 𝑥𝐶) ↾ 𝐵)
9 resmptf.b . . 3 𝑥𝐵
10 nfcv 2903 . . 3 𝑦𝐵
119, 10, 4, 5, 6cbvmptf 5257 . 2 (𝑥𝐵𝐶) = (𝑦𝐵𝑦 / 𝑥𝐶)
121, 8, 113eqtr4g 2800 1 (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wnfc 2888  csb 3908  wss 3963  cmpt 5231  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-mpt 5232  df-xp 5695  df-rel 5696  df-res 5701
This theorem is referenced by:  esumval  34027  esumel  34028  esumsplit  34034  esumss  34053  limsupequzmpt2  45674  liminfequzmpt2  45747
  Copyright terms: Public domain W3C validator