![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resmptf | Structured version Visualization version GIF version |
Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
Ref | Expression |
---|---|
resmptf.a | ⊢ Ⅎ𝑥𝐴 |
resmptf.b | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
resmptf | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resmpt 6037 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶)) | |
2 | resmptf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
4 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑦𝐶 | |
5 | nfcsb1v 3918 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
6 | csbeq1a 3907 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
7 | 2, 3, 4, 5, 6 | cbvmptf 5257 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
8 | 7 | reseq1i 5977 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) |
9 | resmptf.b | . . 3 ⊢ Ⅎ𝑥𝐵 | |
10 | nfcv 2902 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
11 | 9, 10, 4, 5, 6 | cbvmptf 5257 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
12 | 1, 8, 11 | 3eqtr4g 2796 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2882 ⦋csb 3893 ⊆ wss 3948 ↦ cmpt 5231 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-mpt 5232 df-xp 5682 df-rel 5683 df-res 5688 |
This theorem is referenced by: esumval 33510 esumel 33511 esumsplit 33517 esumss 33536 limsupequzmpt2 44896 liminfequzmpt2 44969 |
Copyright terms: Public domain | W3C validator |