| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resmptf | Structured version Visualization version GIF version | ||
| Description: Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
| Ref | Expression |
|---|---|
| resmptf.a | ⊢ Ⅎ𝑥𝐴 |
| resmptf.b | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| resmptf | ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmpt 5986 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶)) | |
| 2 | resmptf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 4 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑦𝐶 | |
| 5 | nfcsb1v 3874 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 6 | csbeq1a 3864 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 7 | 2, 3, 4, 5, 6 | cbvmptf 5191 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
| 8 | 7 | reseq1i 5924 | . 2 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ 𝐵) |
| 9 | resmptf.b | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 10 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 11 | 9, 10, 4, 5, 6 | cbvmptf 5191 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑦 ∈ 𝐵 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
| 12 | 1, 8, 11 | 3eqtr4g 2791 | 1 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Ⅎwnfc 2879 ⦋csb 3850 ⊆ wss 3902 ↦ cmpt 5172 ↾ cres 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-opab 5154 df-mpt 5173 df-xp 5622 df-rel 5623 df-res 5628 |
| This theorem is referenced by: esumval 34054 esumel 34055 esumsplit 34061 esumss 34080 limsupequzmpt2 45755 liminfequzmpt2 45828 |
| Copyright terms: Public domain | W3C validator |