Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupresicompt Structured version   Visualization version   GIF version

Theorem limsupresicompt 45067
Description: The superior limit doesn't change when a function is restricted to the upper part of the reals. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
limsupresicompt.a (𝜑𝐴𝑉)
limsupresicompt.m (𝜑𝑀 ∈ ℝ)
limsupresicompt.z 𝑍 = (𝑀[,)+∞)
Assertion
Ref Expression
limsupresicompt (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = (lim sup‘(𝑥 ∈ (𝐴𝑍) ↦ 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑀(𝑥)   𝑉(𝑥)

Proof of Theorem limsupresicompt
StepHypRef Expression
1 limsupresicompt.m . . 3 (𝜑𝑀 ∈ ℝ)
2 limsupresicompt.z . . 3 𝑍 = (𝑀[,)+∞)
3 limsupresicompt.a . . . 4 (𝜑𝐴𝑉)
43mptexd 7230 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ V)
51, 2, 4limsupresico 45011 . 2 (𝜑 → (lim sup‘((𝑥𝐴𝐵) ↾ 𝑍)) = (lim sup‘(𝑥𝐴𝐵)))
6 resmpt3 6036 . . . 4 ((𝑥𝐴𝐵) ↾ 𝑍) = (𝑥 ∈ (𝐴𝑍) ↦ 𝐵)
76a1i 11 . . 3 (𝜑 → ((𝑥𝐴𝐵) ↾ 𝑍) = (𝑥 ∈ (𝐴𝑍) ↦ 𝐵))
87fveq2d 6895 . 2 (𝜑 → (lim sup‘((𝑥𝐴𝐵) ↾ 𝑍)) = (lim sup‘(𝑥 ∈ (𝐴𝑍) ↦ 𝐵)))
95, 8eqtr3d 2769 1 (𝜑 → (lim sup‘(𝑥𝐴𝐵)) = (lim sup‘(𝑥 ∈ (𝐴𝑍) ↦ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3469  cin 3943  cmpt 5225  cres 5674  cfv 6542  (class class class)co 7414  cr 11129  +∞cpnf 11267  [,)cico 13350  lim supclsp 15438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-ico 13354  df-limsup 15439
This theorem is referenced by:  liminfval4  45100  liminfval3  45101  limsupval4  45105
  Copyright terms: Public domain W3C validator