Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumss Structured version   Visualization version   GIF version

Theorem esumss 33058
Description: Change the index set to a subset by adding zeroes. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
esumss.p 𝑘𝜑
esumss.a 𝑘𝐴
esumss.b 𝑘𝐵
esumss.1 (𝜑𝐴𝐵)
esumss.2 (𝜑𝐵𝑉)
esumss.3 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
esumss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
esumss (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)

Proof of Theorem esumss
StepHypRef Expression
1 esumss.1 . . . . . 6 (𝜑𝐴𝐵)
2 esumss.b . . . . . . 7 𝑘𝐵
3 esumss.a . . . . . . 7 𝑘𝐴
42, 3resmptf 6037 . . . . . 6 (𝐴𝐵 → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
51, 4syl 17 . . . . 5 (𝜑 → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
65oveq2d 7421 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐵𝐶) ↾ 𝐴)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
7 xrge0base 32173 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
8 xrge00 32174 . . . . 5 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
9 xrge0cmn 20979 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
109a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
11 xrge0tps 32910 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
1211a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
13 esumss.2 . . . . 5 (𝜑𝐵𝑉)
14 esumss.p . . . . . 6 𝑘𝜑
15 nfcv 2903 . . . . . 6 𝑘(0[,]+∞)
16 esumss.3 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
17 eqid 2732 . . . . . 6 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
1814, 2, 15, 16, 17fmptdF 31868 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
19 esumss.4 . . . . . 6 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
2014, 2, 3, 19, 13suppss2f 31850 . . . . 5 (𝜑 → ((𝑘𝐵𝐶) supp 0) ⊆ 𝐴)
217, 8, 10, 12, 13, 18, 20tsmsres 23639 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐵𝐶) ↾ 𝐴)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
226, 21eqtr3d 2774 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
2322unieqd 4921 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
24 df-esum 33014 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
25 df-esum 33014 . 2 Σ*𝑘𝐵𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶))
2623, 24, 253eqtr4g 2797 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2883  cdif 3944  wss 3947   cuni 4907  cmpt 5230  cres 5677  (class class class)co 7405  0cc0 11106  +∞cpnf 11241  [,]cicc 13323  s cress 17169  *𝑠cxrs 17442  CMndccmn 19642  TopSpctps 22425   tsums ctsu 23621  Σ*cesum 33013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-xadd 13089  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-tset 17212  df-ple 17213  df-ds 17215  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-ordt 17443  df-xrs 17444  df-ps 18515  df-tsr 18516  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-cntz 19175  df-cmn 19644  df-fbas 20933  df-fg 20934  df-top 22387  df-topon 22404  df-topsp 22426  df-bases 22440  df-ntr 22515  df-nei 22593  df-fil 23341  df-fm 23433  df-flim 23434  df-flf 23435  df-tsms 23622  df-esum 33014
This theorem is referenced by:  esumpinfval  33059
  Copyright terms: Public domain W3C validator