Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumss Structured version   Visualization version   GIF version

Theorem esumss 31559
 Description: Change the index set to a subset by adding zeroes. (Contributed by Thierry Arnoux, 19-Jun-2017.)
Hypotheses
Ref Expression
esumss.p 𝑘𝜑
esumss.a 𝑘𝐴
esumss.b 𝑘𝐵
esumss.1 (𝜑𝐴𝐵)
esumss.2 (𝜑𝐵𝑉)
esumss.3 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
esumss.4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
esumss (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)

Proof of Theorem esumss
StepHypRef Expression
1 esumss.1 . . . . . 6 (𝜑𝐴𝐵)
2 esumss.b . . . . . . 7 𝑘𝐵
3 esumss.a . . . . . . 7 𝑘𝐴
42, 3resmptf 5879 . . . . . 6 (𝐴𝐵 → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
51, 4syl 17 . . . . 5 (𝜑 → ((𝑘𝐵𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
65oveq2d 7166 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐵𝐶) ↾ 𝐴)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
7 xrge0base 30820 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
8 xrge00 30821 . . . . 5 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
9 xrge0cmn 20208 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
109a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
11 xrge0tps 31413 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
1211a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
13 esumss.2 . . . . 5 (𝜑𝐵𝑉)
14 esumss.p . . . . . 6 𝑘𝜑
15 nfcv 2919 . . . . . 6 𝑘(0[,]+∞)
16 esumss.3 . . . . . 6 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
17 eqid 2758 . . . . . 6 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
1814, 2, 15, 16, 17fmptdF 30517 . . . . 5 (𝜑 → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
19 esumss.4 . . . . . 6 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
2014, 2, 3, 19, 13suppss2f 30496 . . . . 5 (𝜑 → ((𝑘𝐵𝐶) supp 0) ⊆ 𝐴)
217, 8, 10, 12, 13, 18, 20tsmsres 22844 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘𝐵𝐶) ↾ 𝐴)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
226, 21eqtr3d 2795 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
2322unieqd 4812 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
24 df-esum 31515 . 2 Σ*𝑘𝐴𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶))
25 df-esum 31515 . 2 Σ*𝑘𝐵𝐶 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶))
2623, 24, 253eqtr4g 2818 1 (𝜑 → Σ*𝑘𝐴𝐶 = Σ*𝑘𝐵𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2111  Ⅎwnfc 2899   ∖ cdif 3855   ⊆ wss 3858  ∪ cuni 4798   ↦ cmpt 5112   ↾ cres 5526  (class class class)co 7150  0cc0 10575  +∞cpnf 10710  [,]cicc 12782   ↾s cress 16542  ℝ*𝑠cxrs 16831  CMndccmn 18973  TopSpctps 21632   tsums ctsu 22826  Σ*cesum 31514 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-xadd 12549  df-icc 12786  df-fz 12940  df-fzo 13083  df-seq 13419  df-hash 13741  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-tset 16642  df-ple 16643  df-ds 16645  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-ordt 16832  df-xrs 16833  df-ps 17876  df-tsr 17877  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-cntz 18514  df-cmn 18975  df-fbas 20163  df-fg 20164  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-ntr 21720  df-nei 21798  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-tsms 22827  df-esum 31515 This theorem is referenced by:  esumpinfval  31560
 Copyright terms: Public domain W3C validator