| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resmptd | Structured version Visualization version GIF version | ||
| Description: Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| resmptd.b | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| Ref | Expression |
|---|---|
| resmptd | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmptd.b | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 2 | resmpt 6055 | . 2 ⊢ (𝐵 ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Copyright terms: Public domain | W3C validator |