![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumel | Structured version Visualization version GIF version |
Description: The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
Ref | Expression |
---|---|
esumel.1 | ⊢ Ⅎ𝑘𝜑 |
esumel.2 | ⊢ Ⅎ𝑘𝐴 |
esumel.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumel.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumel | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumel.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | esumel.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
3 | esumel.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | 3 | ex 412 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
5 | 2, 4 | ralrimi 3263 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
6 | esumel.2 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
7 | 6 | esumcl 33994 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
8 | 1, 5, 7 | syl2anc 583 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
9 | snidg 4682 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞) → Σ*𝑘 ∈ 𝐴𝐵 ∈ {Σ*𝑘 ∈ 𝐴𝐵}) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ {Σ*𝑘 ∈ 𝐴𝐵}) |
11 | eqid 2740 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
12 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
13 | eqid 2740 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
14 | 2, 6, 12, 3, 13 | fmptdF 32674 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
15 | inss1 4258 | . . . . . . . . 9 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
16 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) | |
17 | 15, 16 | sselid 4006 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ 𝒫 𝐴) |
18 | 17 | elpwid 4631 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ 𝐴) |
19 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑥 | |
20 | 6, 19 | resmptf 6068 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
21 | 18, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
22 | 21 | eqcomd 2746 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ 𝑥 ↦ 𝐵) = ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) |
23 | 22 | oveq2d 7464 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) |
24 | 2, 6, 1, 3, 23 | esumval 34010 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))), ℝ*, < )) |
25 | 11, 1, 14, 24 | xrge0tsmsd 33041 | . 2 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {Σ*𝑘 ∈ 𝐴𝐵}) |
26 | 10, 25 | eleqtrrd 2847 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 ↦ cmpt 5249 ↾ cres 5702 (class class class)co 7448 Fincfn 9003 0cc0 11184 +∞cpnf 11321 [,]cicc 13410 ↾s cress 17287 Σg cgsu 17500 ℝ*𝑠cxrs 17560 tsums ctsu 24155 Σ*cesum 33991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-xadd 13176 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-tset 17330 df-ple 17331 df-ds 17333 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-ordt 17561 df-xrs 17562 df-mre 17644 df-mrc 17645 df-acs 17647 df-ps 18636 df-tsr 18637 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-cntz 19357 df-cmn 19824 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-ntr 23049 df-nei 23127 df-cn 23256 df-haus 23344 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tsms 24156 df-esum 33992 |
This theorem is referenced by: esumsplit 34017 esumadd 34021 esumaddf 34025 esumcocn 34044 |
Copyright terms: Public domain | W3C validator |