Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumel Structured version   Visualization version   GIF version

Theorem esumel 33797
Description: The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
esumel.1 𝑘𝜑
esumel.2 𝑘𝐴
esumel.3 (𝜑𝐴𝑉)
esumel.4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumel (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 esumel.3 . . . 4 (𝜑𝐴𝑉)
2 esumel.1 . . . . 5 𝑘𝜑
3 esumel.4 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
43ex 411 . . . . 5 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
52, 4ralrimi 3244 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
6 esumel.2 . . . . 5 𝑘𝐴
76esumcl 33780 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
81, 5, 7syl2anc 582 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
9 snidg 4664 . . 3 *𝑘𝐴𝐵 ∈ (0[,]+∞) → Σ*𝑘𝐴𝐵 ∈ {Σ*𝑘𝐴𝐵})
108, 9syl 17 . 2 (𝜑 → Σ*𝑘𝐴𝐵 ∈ {Σ*𝑘𝐴𝐵})
11 eqid 2725 . . 3 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
12 nfcv 2891 . . . 4 𝑘(0[,]+∞)
13 eqid 2725 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
142, 6, 12, 3, 13fmptdF 32523 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
15 inss1 4227 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
16 simpr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1715, 16sselid 3974 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ 𝒫 𝐴)
1817elpwid 4613 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
19 nfcv 2891 . . . . . . . 8 𝑘𝑥
206, 19resmptf 6044 . . . . . . 7 (𝑥𝐴 → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
2118, 20syl 17 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
2221eqcomd 2731 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵) = ((𝑘𝐴𝐵) ↾ 𝑥))
2322oveq2d 7435 . . . 4 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥)))
242, 6, 1, 3, 23esumval 33796 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥))), ℝ*, < ))
2511, 1, 14, 24xrge0tsmsd 32861 . 2 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {Σ*𝑘𝐴𝐵})
2610, 25eleqtrrd 2828 1 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wnf 1777  wcel 2098  wnfc 2875  wral 3050  cin 3943  wss 3944  𝒫 cpw 4604  {csn 4630  cmpt 5232  cres 5680  (class class class)co 7419  Fincfn 8964  0cc0 11140  +∞cpnf 11277  [,]cicc 13362  s cress 17212   Σg cgsu 17425  *𝑠cxrs 17485   tsums ctsu 24074  Σ*cesum 33777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-xadd 13128  df-ioo 13363  df-ioc 13364  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-tset 17255  df-ple 17256  df-ds 17258  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-ordt 17486  df-xrs 17487  df-mre 17569  df-mrc 17570  df-acs 17572  df-ps 18561  df-tsr 18562  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-cntz 19280  df-cmn 19749  df-fbas 21293  df-fg 21294  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-ntr 22968  df-nei 23046  df-cn 23175  df-haus 23263  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-tsms 24075  df-esum 33778
This theorem is referenced by:  esumsplit  33803  esumadd  33807  esumaddf  33811  esumcocn  33830
  Copyright terms: Public domain W3C validator