![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumel | Structured version Visualization version GIF version |
Description: The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
Ref | Expression |
---|---|
esumel.1 | ⊢ Ⅎ𝑘𝜑 |
esumel.2 | ⊢ Ⅎ𝑘𝐴 |
esumel.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumel.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumel | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumel.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | esumel.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
3 | esumel.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | 3 | ex 414 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
5 | 2, 4 | ralrimi 3243 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
6 | esumel.2 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
7 | 6 | esumcl 32669 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
8 | 1, 5, 7 | syl2anc 585 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
9 | snidg 4625 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞) → Σ*𝑘 ∈ 𝐴𝐵 ∈ {Σ*𝑘 ∈ 𝐴𝐵}) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ {Σ*𝑘 ∈ 𝐴𝐵}) |
11 | eqid 2737 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
12 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
13 | eqid 2737 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
14 | 2, 6, 12, 3, 13 | fmptdF 31614 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
15 | inss1 4193 | . . . . . . . . 9 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
16 | simpr 486 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) | |
17 | 15, 16 | sselid 3947 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ 𝒫 𝐴) |
18 | 17 | elpwid 4574 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ 𝐴) |
19 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑥 | |
20 | 6, 19 | resmptf 5998 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
21 | 18, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
22 | 21 | eqcomd 2743 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ 𝑥 ↦ 𝐵) = ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) |
23 | 22 | oveq2d 7378 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) |
24 | 2, 6, 1, 3, 23 | esumval 32685 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))), ℝ*, < )) |
25 | 11, 1, 14, 24 | xrge0tsmsd 31941 | . 2 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {Σ*𝑘 ∈ 𝐴𝐵}) |
26 | 10, 25 | eleqtrrd 2841 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2888 ∀wral 3065 ∩ cin 3914 ⊆ wss 3915 𝒫 cpw 4565 {csn 4591 ↦ cmpt 5193 ↾ cres 5640 (class class class)co 7362 Fincfn 8890 0cc0 11058 +∞cpnf 11193 [,]cicc 13274 ↾s cress 17119 Σg cgsu 17329 ℝ*𝑠cxrs 17389 tsums ctsu 23493 Σ*cesum 32666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-iin 4962 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-of 7622 df-om 7808 df-1st 7926 df-2nd 7927 df-supp 8098 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-map 8774 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-fsupp 9313 df-fi 9354 df-sup 9385 df-inf 9386 df-oi 9453 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-4 12225 df-5 12226 df-6 12227 df-7 12228 df-8 12229 df-9 12230 df-n0 12421 df-z 12507 df-dec 12626 df-uz 12771 df-q 12881 df-xadd 13041 df-ioo 13275 df-ioc 13276 df-ico 13277 df-icc 13278 df-fz 13432 df-fzo 13575 df-seq 13914 df-hash 14238 df-struct 17026 df-sets 17043 df-slot 17061 df-ndx 17073 df-base 17091 df-ress 17120 df-plusg 17153 df-mulr 17154 df-tset 17159 df-ple 17160 df-ds 17162 df-rest 17311 df-topn 17312 df-0g 17330 df-gsum 17331 df-topgen 17332 df-ordt 17390 df-xrs 17391 df-mre 17473 df-mrc 17474 df-acs 17476 df-ps 18462 df-tsr 18463 df-mgm 18504 df-sgrp 18553 df-mnd 18564 df-submnd 18609 df-cntz 19104 df-cmn 19571 df-fbas 20809 df-fg 20810 df-top 22259 df-topon 22276 df-topsp 22298 df-bases 22312 df-ntr 22387 df-nei 22465 df-cn 22594 df-haus 22682 df-fil 23213 df-fm 23305 df-flim 23306 df-flf 23307 df-tsms 23494 df-esum 32667 |
This theorem is referenced by: esumsplit 32692 esumadd 32696 esumaddf 32700 esumcocn 32719 |
Copyright terms: Public domain | W3C validator |