Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumel Structured version   Visualization version   GIF version

Theorem esumel 33575
Description: The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
esumel.1 𝑘𝜑
esumel.2 𝑘𝐴
esumel.3 (𝜑𝐴𝑉)
esumel.4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumel (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
Distinct variable group:   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem esumel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 esumel.3 . . . 4 (𝜑𝐴𝑉)
2 esumel.1 . . . . 5 𝑘𝜑
3 esumel.4 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
43ex 412 . . . . 5 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
52, 4ralrimi 3248 . . . 4 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
6 esumel.2 . . . . 5 𝑘𝐴
76esumcl 33558 . . . 4 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
81, 5, 7syl2anc 583 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ (0[,]+∞))
9 snidg 4657 . . 3 *𝑘𝐴𝐵 ∈ (0[,]+∞) → Σ*𝑘𝐴𝐵 ∈ {Σ*𝑘𝐴𝐵})
108, 9syl 17 . 2 (𝜑 → Σ*𝑘𝐴𝐵 ∈ {Σ*𝑘𝐴𝐵})
11 eqid 2726 . . 3 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
12 nfcv 2897 . . . 4 𝑘(0[,]+∞)
13 eqid 2726 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
142, 6, 12, 3, 13fmptdF 32386 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
15 inss1 4223 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
16 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
1715, 16sselid 3975 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ 𝒫 𝐴)
1817elpwid 4606 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
19 nfcv 2897 . . . . . . . 8 𝑘𝑥
206, 19resmptf 6032 . . . . . . 7 (𝑥𝐴 → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
2118, 20syl 17 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
2221eqcomd 2732 . . . . 5 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵) = ((𝑘𝐴𝐵) ↾ 𝑥))
2322oveq2d 7420 . . . 4 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥)))
242, 6, 1, 3, 23esumval 33574 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥))), ℝ*, < ))
2511, 1, 14, 24xrge0tsmsd 32713 . 2 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {Σ*𝑘𝐴𝐵})
2610, 25eleqtrrd 2830 1 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wnf 1777  wcel 2098  wnfc 2877  wral 3055  cin 3942  wss 3943  𝒫 cpw 4597  {csn 4623  cmpt 5224  cres 5671  (class class class)co 7404  Fincfn 8938  0cc0 11109  +∞cpnf 11246  [,]cicc 13330  s cress 17180   Σg cgsu 17393  *𝑠cxrs 17453   tsums ctsu 23981  Σ*cesum 33555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8144  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-q 12934  df-xadd 13096  df-ioo 13331  df-ioc 13332  df-ico 13333  df-icc 13334  df-fz 13488  df-fzo 13631  df-seq 13970  df-hash 14294  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-tset 17223  df-ple 17224  df-ds 17226  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-ordt 17454  df-xrs 17455  df-mre 17537  df-mrc 17538  df-acs 17540  df-ps 18529  df-tsr 18530  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-cntz 19231  df-cmn 19700  df-fbas 21233  df-fg 21234  df-top 22747  df-topon 22764  df-topsp 22786  df-bases 22800  df-ntr 22875  df-nei 22953  df-cn 23082  df-haus 23170  df-fil 23701  df-fm 23793  df-flim 23794  df-flf 23795  df-tsms 23982  df-esum 33556
This theorem is referenced by:  esumsplit  33581  esumadd  33585  esumaddf  33589  esumcocn  33608
  Copyright terms: Public domain W3C validator