Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumel | Structured version Visualization version GIF version |
Description: The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
Ref | Expression |
---|---|
esumel.1 | ⊢ Ⅎ𝑘𝜑 |
esumel.2 | ⊢ Ⅎ𝑘𝐴 |
esumel.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumel.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumel | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumel.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | esumel.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
3 | esumel.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | 3 | ex 416 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
5 | 2, 4 | ralrimi 3127 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
6 | esumel.2 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
7 | 6 | esumcl 31560 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
8 | 1, 5, 7 | syl2anc 587 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
9 | snidg 4547 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞) → Σ*𝑘 ∈ 𝐴𝐵 ∈ {Σ*𝑘 ∈ 𝐴𝐵}) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ {Σ*𝑘 ∈ 𝐴𝐵}) |
11 | eqid 2738 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
12 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
13 | eqid 2738 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
14 | 2, 6, 12, 3, 13 | fmptdF 30560 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
15 | inss1 4117 | . . . . . . . . 9 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
16 | simpr 488 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) | |
17 | 15, 16 | sseldi 3873 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ 𝒫 𝐴) |
18 | 17 | elpwid 4496 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ 𝐴) |
19 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑥 | |
20 | 6, 19 | resmptf 5875 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
21 | 18, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
22 | 21 | eqcomd 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ 𝑥 ↦ 𝐵) = ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) |
23 | 22 | oveq2d 7180 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) |
24 | 2, 6, 1, 3, 23 | esumval 31576 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))), ℝ*, < )) |
25 | 11, 1, 14, 24 | xrge0tsmsd 30886 | . 2 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {Σ*𝑘 ∈ 𝐴𝐵}) |
26 | 10, 25 | eleqtrrd 2836 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 Ⅎwnf 1790 ∈ wcel 2113 Ⅎwnfc 2879 ∀wral 3053 ∩ cin 3840 ⊆ wss 3841 𝒫 cpw 4485 {csn 4513 ↦ cmpt 5107 ↾ cres 5521 (class class class)co 7164 Fincfn 8548 0cc0 10608 +∞cpnf 10743 [,]cicc 12817 ↾s cress 16580 Σg cgsu 16810 ℝ*𝑠cxrs 16869 tsums ctsu 22870 Σ*cesum 31557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-iin 4881 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-of 7419 df-om 7594 df-1st 7707 df-2nd 7708 df-supp 7850 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-map 8432 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-fsupp 8900 df-fi 8941 df-sup 8972 df-inf 8973 df-oi 9040 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-dec 12173 df-uz 12318 df-q 12424 df-xadd 12584 df-ioo 12818 df-ioc 12819 df-ico 12820 df-icc 12821 df-fz 12975 df-fzo 13118 df-seq 13454 df-hash 13776 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-mulr 16675 df-tset 16680 df-ple 16681 df-ds 16683 df-rest 16792 df-topn 16793 df-0g 16811 df-gsum 16812 df-topgen 16813 df-ordt 16870 df-xrs 16871 df-mre 16953 df-mrc 16954 df-acs 16956 df-ps 17919 df-tsr 17920 df-mgm 17961 df-sgrp 18010 df-mnd 18021 df-submnd 18066 df-cntz 18558 df-cmn 19019 df-fbas 20207 df-fg 20208 df-top 21638 df-topon 21655 df-topsp 21677 df-bases 21690 df-ntr 21764 df-nei 21842 df-cn 21971 df-haus 22059 df-fil 22590 df-fm 22682 df-flim 22683 df-flf 22684 df-tsms 22871 df-esum 31558 |
This theorem is referenced by: esumsplit 31583 esumadd 31587 esumaddf 31591 esumcocn 31610 |
Copyright terms: Public domain | W3C validator |