![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumel | Structured version Visualization version GIF version |
Description: The extended sum is a limit point of the corresponding infinite group sum. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
Ref | Expression |
---|---|
esumel.1 | ⊢ Ⅎ𝑘𝜑 |
esumel.2 | ⊢ Ⅎ𝑘𝐴 |
esumel.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumel.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumel | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumel.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | esumel.1 | . . . . 5 ⊢ Ⅎ𝑘𝜑 | |
3 | esumel.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | 3 | ex 402 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
5 | 2, 4 | ralrimi 3136 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
6 | esumel.2 | . . . . 5 ⊢ Ⅎ𝑘𝐴 | |
7 | 6 | esumcl 30600 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
8 | 1, 5, 7 | syl2anc 580 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞)) |
9 | snidg 4396 | . . 3 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ (0[,]+∞) → Σ*𝑘 ∈ 𝐴𝐵 ∈ {Σ*𝑘 ∈ 𝐴𝐵}) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ {Σ*𝑘 ∈ 𝐴𝐵}) |
11 | eqid 2797 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
12 | nfcv 2939 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
13 | eqid 2797 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
14 | 2, 6, 12, 3, 13 | fmptdF 29967 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
15 | inss1 4026 | . . . . . . . . 9 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
16 | simpr 478 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) | |
17 | 15, 16 | sseldi 3794 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ 𝒫 𝐴) |
18 | 17 | elpwid 4359 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ 𝐴) |
19 | nfcv 2939 | . . . . . . . 8 ⊢ Ⅎ𝑘𝑥 | |
20 | 6, 19 | resmptf 5661 | . . . . . . 7 ⊢ (𝑥 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
21 | 18, 20 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
22 | 21 | eqcomd 2803 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ 𝑥 ↦ 𝐵) = ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) |
23 | 22 | oveq2d 6892 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) |
24 | 2, 6, 1, 3, 23 | esumval 30616 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))), ℝ*, < )) |
25 | 11, 1, 14, 24 | xrge0tsmsd 30293 | . 2 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {Σ*𝑘 ∈ 𝐴𝐵}) |
26 | 10, 25 | eleqtrrd 2879 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 Ⅎwnf 1879 ∈ wcel 2157 Ⅎwnfc 2926 ∀wral 3087 ∩ cin 3766 ⊆ wss 3767 𝒫 cpw 4347 {csn 4366 ↦ cmpt 4920 ↾ cres 5312 (class class class)co 6876 Fincfn 8193 0cc0 10222 +∞cpnf 10358 [,]cicc 12423 ↾s cress 16182 Σg cgsu 16413 ℝ*𝑠cxrs 16472 tsums ctsu 22254 Σ*cesum 30597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-pre-sup 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-fsupp 8516 df-fi 8557 df-sup 8588 df-inf 8589 df-oi 8655 df-card 9049 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-div 10975 df-nn 11311 df-2 11372 df-3 11373 df-4 11374 df-5 11375 df-6 11376 df-7 11377 df-8 11378 df-9 11379 df-n0 11577 df-z 11663 df-dec 11780 df-uz 11927 df-q 12030 df-xadd 12190 df-ioo 12424 df-ioc 12425 df-ico 12426 df-icc 12427 df-fz 12577 df-fzo 12717 df-seq 13052 df-hash 13367 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-mulr 16278 df-tset 16283 df-ple 16284 df-ds 16286 df-rest 16395 df-topn 16396 df-0g 16414 df-gsum 16415 df-topgen 16416 df-ordt 16473 df-xrs 16474 df-mre 16558 df-mrc 16559 df-acs 16561 df-ps 17512 df-tsr 17513 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-submnd 17648 df-cntz 18059 df-cmn 18507 df-fbas 20062 df-fg 20063 df-top 21024 df-topon 21041 df-topsp 21063 df-bases 21076 df-ntr 21150 df-nei 21228 df-cn 21357 df-haus 21445 df-fil 21975 df-fm 22067 df-flim 22068 df-flf 22069 df-tsms 22255 df-esum 30598 |
This theorem is referenced by: esumsplit 30623 esumadd 30627 esumaddf 30631 esumcocn 30650 |
Copyright terms: Public domain | W3C validator |