![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumsplit | Structured version Visualization version GIF version |
Description: Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017.) |
Ref | Expression |
---|---|
esumsplit.1 | ⊢ Ⅎ𝑘𝜑 |
esumsplit.2 | ⊢ Ⅎ𝑘𝐴 |
esumsplit.3 | ⊢ Ⅎ𝑘𝐵 |
esumsplit.4 | ⊢ (𝜑 → 𝐴 ∈ V) |
esumsplit.5 | ⊢ (𝜑 → 𝐵 ∈ V) |
esumsplit.6 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
esumsplit.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
esumsplit.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumsplit | ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ 𝐵𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumsplit.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumsplit.2 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
3 | esumsplit.3 | . . 3 ⊢ Ⅎ𝑘𝐵 | |
4 | 2, 3 | nfun 4032 | . 2 ⊢ Ⅎ𝑘(𝐴 ∪ 𝐵) |
5 | esumsplit.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
6 | esumsplit.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
7 | unexg 7295 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
8 | 5, 6, 7 | syl2anc 576 | . 2 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
9 | elun 4016 | . . 3 ⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) | |
10 | esumsplit.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
11 | esumsplit.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) | |
12 | 10, 11 | jaodan 941 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
13 | 9, 12 | sylan2b 585 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
14 | xrge0base 30430 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
15 | xrge0plusg 30432 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
16 | xrge0cmn 20304 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
18 | xrge0tmd 30865 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd) |
20 | nfcv 2934 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
21 | eqid 2780 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = (𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) | |
22 | 1, 4, 20, 13, 21 | fmptdF 30180 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶):(𝐴 ∪ 𝐵)⟶(0[,]+∞)) |
23 | 1, 2, 5, 10 | esumel 30982 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
24 | ssun1 4039 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
25 | 4, 2 | resmptf 5757 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) → ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
26 | 24, 25 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
27 | 26 | oveq2d 6998 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
28 | 23, 27 | eleqtrrd 2871 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴))) |
29 | 1, 3, 6, 11 | esumel 30982 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐵𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐶))) |
30 | ssun2 4040 | . . . . . 6 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
31 | 4, 3 | resmptf 5757 | . . . . . 6 ⊢ (𝐵 ⊆ (𝐴 ∪ 𝐵) → ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑘 ∈ 𝐵 ↦ 𝐶)) |
32 | 30, 31 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑘 ∈ 𝐵 ↦ 𝐶)) |
33 | 32 | oveq2d 6998 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐶))) |
34 | 29, 33 | eleqtrrd 2871 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐵𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) |
35 | esumsplit.6 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
36 | eqidd 2781 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵)) | |
37 | 14, 15, 17, 19, 8, 22, 28, 34, 35, 36 | tsmssplit 22478 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ 𝐵𝐶) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶))) |
38 | 1, 4, 8, 13, 37 | esumid 30979 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ 𝐵𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∨ wo 834 = wceq 1508 Ⅎwnf 1747 ∈ wcel 2051 Ⅎwnfc 2918 Vcvv 3417 ∪ cun 3829 ∩ cin 3830 ⊆ wss 3831 ∅c0 4181 ↦ cmpt 5013 ↾ cres 5413 (class class class)co 6982 0cc0 10341 +∞cpnf 10477 +𝑒 cxad 12328 [,]cicc 12563 ↾s cress 16346 ℝ*𝑠cxrs 16635 CMndccmn 18678 TopMndctmd 22397 tsums ctsu 22452 Σ*cesum 30962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-inf2 8904 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 ax-addf 10420 ax-mulf 10421 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-int 4755 df-iun 4799 df-iin 4800 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-se 5371 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-isom 6202 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-of 7233 df-om 7403 df-1st 7507 df-2nd 7508 df-supp 7640 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-1o 7911 df-2o 7912 df-oadd 7915 df-er 8095 df-map 8214 df-pm 8215 df-ixp 8266 df-en 8313 df-dom 8314 df-sdom 8315 df-fin 8316 df-fsupp 8635 df-fi 8676 df-sup 8707 df-inf 8708 df-oi 8775 df-card 9168 df-cda 9394 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-n0 11714 df-z 11800 df-dec 11918 df-uz 12065 df-q 12169 df-rp 12211 df-xneg 12330 df-xadd 12331 df-xmul 12332 df-ioo 12564 df-ioc 12565 df-ico 12566 df-icc 12567 df-fz 12715 df-fzo 12856 df-fl 12983 df-mod 13059 df-seq 13191 df-exp 13251 df-fac 13455 df-bc 13484 df-hash 13512 df-shft 14293 df-cj 14325 df-re 14326 df-im 14327 df-sqrt 14461 df-abs 14462 df-limsup 14695 df-clim 14712 df-rlim 14713 df-sum 14910 df-ef 15287 df-sin 15289 df-cos 15290 df-pi 15292 df-struct 16347 df-ndx 16348 df-slot 16349 df-base 16351 df-sets 16352 df-ress 16353 df-plusg 16440 df-mulr 16441 df-starv 16442 df-sca 16443 df-vsca 16444 df-ip 16445 df-tset 16446 df-ple 16447 df-ds 16449 df-unif 16450 df-hom 16451 df-cco 16452 df-rest 16558 df-topn 16559 df-0g 16577 df-gsum 16578 df-topgen 16579 df-pt 16580 df-prds 16583 df-ordt 16636 df-xrs 16637 df-qtop 16642 df-imas 16643 df-xps 16645 df-mre 16727 df-mrc 16728 df-acs 16730 df-ps 17680 df-tsr 17681 df-plusf 17721 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-mhm 17815 df-submnd 17816 df-grp 17906 df-minusg 17907 df-sbg 17908 df-mulg 18024 df-subg 18072 df-cntz 18230 df-cmn 18680 df-abl 18681 df-mgp 18975 df-ur 18987 df-ring 19034 df-cring 19035 df-subrg 19268 df-abv 19322 df-lmod 19370 df-scaf 19371 df-sra 19678 df-rgmod 19679 df-psmet 20254 df-xmet 20255 df-met 20256 df-bl 20257 df-mopn 20258 df-fbas 20259 df-fg 20260 df-cnfld 20263 df-top 21221 df-topon 21238 df-topsp 21260 df-bases 21273 df-cld 21346 df-ntr 21347 df-cls 21348 df-nei 21425 df-lp 21463 df-perf 21464 df-cn 21554 df-cnp 21555 df-haus 21642 df-tx 21889 df-hmeo 22082 df-fil 22173 df-fm 22265 df-flim 22266 df-flf 22267 df-tmd 22399 df-tgp 22400 df-tsms 22453 df-trg 22486 df-xms 22648 df-ms 22649 df-tms 22650 df-nm 22910 df-ngp 22911 df-nrg 22913 df-nlm 22914 df-ii 23203 df-cncf 23204 df-limc 24182 df-dv 24183 df-log 24856 df-esum 30963 |
This theorem is referenced by: esummono 30989 esumpad 30990 esumpr 31001 esumrnmpt2 31003 esumfzf 31004 esumpmono 31014 hasheuni 31020 esum2dlem 31027 measvuni 31150 ddemeas 31172 carsgclctunlem1 31252 |
Copyright terms: Public domain | W3C validator |