| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumsplit | Structured version Visualization version GIF version | ||
| Description: Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017.) |
| Ref | Expression |
|---|---|
| esumsplit.1 | ⊢ Ⅎ𝑘𝜑 |
| esumsplit.2 | ⊢ Ⅎ𝑘𝐴 |
| esumsplit.3 | ⊢ Ⅎ𝑘𝐵 |
| esumsplit.4 | ⊢ (𝜑 → 𝐴 ∈ V) |
| esumsplit.5 | ⊢ (𝜑 → 𝐵 ∈ V) |
| esumsplit.6 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| esumsplit.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| esumsplit.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| esumsplit | ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ 𝐵𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumsplit.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | esumsplit.2 | . . 3 ⊢ Ⅎ𝑘𝐴 | |
| 3 | esumsplit.3 | . . 3 ⊢ Ⅎ𝑘𝐵 | |
| 4 | 2, 3 | nfun 4117 | . 2 ⊢ Ⅎ𝑘(𝐴 ∪ 𝐵) |
| 5 | esumsplit.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 6 | esumsplit.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 7 | unexg 7676 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∪ 𝐵) ∈ V) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) |
| 9 | elun 4100 | . . 3 ⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) | |
| 10 | esumsplit.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
| 11 | esumsplit.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) | |
| 12 | 10, 11 | jaodan 959 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 13 | 9, 12 | sylan2b 594 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 14 | xrge0base 17511 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 15 | xrge0plusg 21376 | . . 3 ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 16 | xrge0cmn 21381 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
| 18 | xrge0tmd 33958 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd | |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopMnd) |
| 20 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
| 21 | eqid 2731 | . . . 4 ⊢ (𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = (𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) | |
| 22 | 1, 4, 20, 13, 21 | fmptdF 32638 | . . 3 ⊢ (𝜑 → (𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶):(𝐴 ∪ 𝐵)⟶(0[,]+∞)) |
| 23 | 1, 2, 5, 10 | esumel 34060 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
| 24 | ssun1 4125 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 25 | 4, 2 | resmptf 5987 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) → ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
| 26 | 24, 25 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝐶)) |
| 27 | 26 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐶))) |
| 28 | 23, 27 | eleqtrrd 2834 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴))) |
| 29 | 1, 3, 6, 11 | esumel 34060 | . . . 4 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐵𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐶))) |
| 30 | ssun2 4126 | . . . . . 6 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 31 | 4, 3 | resmptf 5987 | . . . . . 6 ⊢ (𝐵 ⊆ (𝐴 ∪ 𝐵) → ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑘 ∈ 𝐵 ↦ 𝐶)) |
| 32 | 30, 31 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑘 ∈ 𝐵 ↦ 𝐶)) |
| 33 | 32 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐵 ↦ 𝐶))) |
| 34 | 29, 33 | eleqtrrd 2834 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐵𝐶 ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) |
| 35 | esumsplit.6 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
| 36 | eqidd 2732 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵)) | |
| 37 | 14, 15, 17, 19, 8, 22, 28, 34, 35, 36 | tsmssplit 24067 | . 2 ⊢ (𝜑 → (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ 𝐵𝐶) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶))) |
| 38 | 1, 4, 8, 13, 37 | esumid 34057 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ (𝐴 ∪ 𝐵)𝐶 = (Σ*𝑘 ∈ 𝐴𝐶 +𝑒 Σ*𝑘 ∈ 𝐵𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4280 ↦ cmpt 5170 ↾ cres 5616 (class class class)co 7346 0cc0 11006 +∞cpnf 11143 +𝑒 cxad 13009 [,]cicc 13248 ↾s cress 17141 ℝ*𝑠cxrs 17404 CMndccmn 19692 TopMndctmd 23985 tsums ctsu 24041 Σ*cesum 34040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ioc 13250 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-bc 14210 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-pi 15979 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-ordt 17405 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-ps 18472 df-tsr 18473 df-plusf 18547 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-cring 20154 df-subrng 20461 df-subrg 20485 df-abv 20724 df-lmod 20795 df-scaf 20796 df-sra 21107 df-rgmod 21108 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-tmd 23987 df-tgp 23988 df-tsms 24042 df-trg 24075 df-xms 24235 df-ms 24236 df-tms 24237 df-nm 24497 df-ngp 24498 df-nrg 24500 df-nlm 24501 df-ii 24797 df-cncf 24798 df-limc 25794 df-dv 25795 df-log 26492 df-esum 34041 |
| This theorem is referenced by: esummono 34067 esumpad 34068 esumpr 34079 esumrnmpt2 34081 esumfzf 34082 esumpmono 34092 hasheuni 34098 esum2dlem 34105 measvuni 34227 ddemeas 34249 carsgclctunlem1 34330 |
| Copyright terms: Public domain | W3C validator |