Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsplit Structured version   Visualization version   GIF version

Theorem esumsplit 33346
Description: Split an extended sum into two parts. (Contributed by Thierry Arnoux, 9-May-2017.)
Hypotheses
Ref Expression
esumsplit.1 𝑘𝜑
esumsplit.2 𝑘𝐴
esumsplit.3 𝑘𝐵
esumsplit.4 (𝜑𝐴 ∈ V)
esumsplit.5 (𝜑𝐵 ∈ V)
esumsplit.6 (𝜑 → (𝐴𝐵) = ∅)
esumsplit.7 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
esumsplit.8 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
esumsplit (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘𝐵𝐶))

Proof of Theorem esumsplit
StepHypRef Expression
1 esumsplit.1 . 2 𝑘𝜑
2 esumsplit.2 . . 3 𝑘𝐴
3 esumsplit.3 . . 3 𝑘𝐵
42, 3nfun 4166 . 2 𝑘(𝐴𝐵)
5 esumsplit.4 . . 3 (𝜑𝐴 ∈ V)
6 esumsplit.5 . . 3 (𝜑𝐵 ∈ V)
7 unexg 7739 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
85, 6, 7syl2anc 583 . 2 (𝜑 → (𝐴𝐵) ∈ V)
9 elun 4149 . . 3 (𝑘 ∈ (𝐴𝐵) ↔ (𝑘𝐴𝑘𝐵))
10 esumsplit.7 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
11 esumsplit.8 . . . 4 ((𝜑𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
1210, 11jaodan 955 . . 3 ((𝜑 ∧ (𝑘𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
139, 12sylan2b 593 . 2 ((𝜑𝑘 ∈ (𝐴𝐵)) → 𝐶 ∈ (0[,]+∞))
14 xrge0base 32450 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
15 xrge0plusg 32452 . . 3 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
16 xrge0cmn 21188 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1716a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
18 xrge0tmd 33220 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd
1918a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopMnd)
20 nfcv 2902 . . . 4 𝑘(0[,]+∞)
21 eqid 2731 . . . 4 (𝑘 ∈ (𝐴𝐵) ↦ 𝐶) = (𝑘 ∈ (𝐴𝐵) ↦ 𝐶)
221, 4, 20, 13, 21fmptdF 32145 . . 3 (𝜑 → (𝑘 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶(0[,]+∞))
231, 2, 5, 10esumel 33340 . . . 4 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
24 ssun1 4173 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
254, 2resmptf 6040 . . . . . 6 (𝐴 ⊆ (𝐴𝐵) → ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
2624, 25mp1i 13 . . . . 5 (𝜑 → ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑘𝐴𝐶))
2726oveq2d 7428 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐶)))
2823, 27eleqtrrd 2835 . . 3 (𝜑 → Σ*𝑘𝐴𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐴)))
291, 3, 6, 11esumel 33340 . . . 4 (𝜑 → Σ*𝑘𝐵𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
30 ssun2 4174 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
314, 3resmptf 6040 . . . . . 6 (𝐵 ⊆ (𝐴𝐵) → ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑘𝐵𝐶))
3230, 31mp1i 13 . . . . 5 (𝜑 → ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑘𝐵𝐶))
3332oveq2d 7428 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵)) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐵𝐶)))
3429, 33eleqtrrd 2835 . . 3 (𝜑 → Σ*𝑘𝐵𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums ((𝑘 ∈ (𝐴𝐵) ↦ 𝐶) ↾ 𝐵)))
35 esumsplit.6 . . 3 (𝜑 → (𝐴𝐵) = ∅)
36 eqidd 2732 . . 3 (𝜑 → (𝐴𝐵) = (𝐴𝐵))
3714, 15, 17, 19, 8, 22, 28, 34, 35, 36tsmssplit 23877 . 2 (𝜑 → (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘𝐵𝐶) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ (𝐴𝐵) ↦ 𝐶)))
381, 4, 8, 13, 37esumid 33337 1 (𝜑 → Σ*𝑘 ∈ (𝐴𝐵)𝐶 = (Σ*𝑘𝐴𝐶 +𝑒 Σ*𝑘𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844   = wceq 1540  wnf 1784  wcel 2105  wnfc 2882  Vcvv 3473  cun 3947  cin 3948  wss 3949  c0 4323  cmpt 5232  cres 5679  (class class class)co 7412  0cc0 11113  +∞cpnf 11250   +𝑒 cxad 13095  [,]cicc 13332  s cress 17178  *𝑠cxrs 17451  CMndccmn 19690  TopMndctmd 23795   tsums ctsu 23851  Σ*cesum 33320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-addf 11192  ax-mulf 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-er 8706  df-map 8825  df-pm 8826  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-fi 9409  df-sup 9440  df-inf 9441  df-oi 9508  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ioc 13334  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-seq 13972  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15019  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-limsup 15420  df-clim 15437  df-rlim 15438  df-sum 15638  df-ef 16016  df-sin 16018  df-cos 16019  df-pi 16021  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-ordt 17452  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-ps 18524  df-tsr 18525  df-plusf 18565  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-mhm 18706  df-submnd 18707  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18988  df-subg 19040  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-subrng 20435  df-subrg 20460  df-abv 20569  df-lmod 20617  df-scaf 20618  df-sra 20931  df-rgmod 20932  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-lp 22861  df-perf 22862  df-cn 22952  df-cnp 22953  df-haus 23040  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-tmd 23797  df-tgp 23798  df-tsms 23852  df-trg 23885  df-xms 24047  df-ms 24048  df-tms 24049  df-nm 24312  df-ngp 24313  df-nrg 24315  df-nlm 24316  df-ii 24618  df-cncf 24619  df-limc 25616  df-dv 25617  df-log 26298  df-esum 33321
This theorem is referenced by:  esummono  33347  esumpad  33348  esumpr  33359  esumrnmpt2  33361  esumfzf  33362  esumpmono  33372  hasheuni  33378  esum2dlem  33385  measvuni  33507  ddemeas  33529  carsgclctunlem1  33611
  Copyright terms: Public domain W3C validator