Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumval | Structured version Visualization version GIF version |
Description: Develop the value of the extended sum. (Contributed by Thierry Arnoux, 4-Jan-2017.) |
Ref | Expression |
---|---|
esumval.p | ⊢ Ⅎ𝑘𝜑 |
esumval.0 | ⊢ Ⅎ𝑘𝐴 |
esumval.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
esumval.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
esumval.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) = 𝐶) |
Ref | Expression |
---|---|
esumval | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 31708 | . . 3 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | eqid 2737 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
3 | esumval.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | esumval.p | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
5 | esumval.0 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
6 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑘(0[,]+∞) | |
7 | esumval.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
8 | eqid 2737 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
9 | 4, 5, 6, 7, 8 | fmptdF 30713 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
10 | inss1 4143 | . . . . . . . . . . . . . 14 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
11 | 10 | sseli 3896 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) |
12 | 11 | elpwid 4524 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
13 | 12 | adantl 485 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ 𝐴) |
14 | nfcv 2904 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘𝑥 | |
15 | 5, 14 | resmptf 5907 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
16 | 13, 15 | syl 17 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
17 | 16 | oveq2d 7229 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
18 | esumval.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) = 𝐶) | |
19 | 17, 18 | eqtr2d 2778 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) |
20 | 19 | mpteq2dva 5150 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)))) |
21 | 20 | rneqd 5807 | . . . . . 6 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)))) |
22 | 21 | supeq1d 9062 | . . . . 5 ⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))), ℝ*, < )) |
23 | 2, 3, 9, 22 | xrge0tsmsd 31036 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )}) |
24 | 23 | unieqd 4833 | . . 3 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )}) |
25 | 1, 24 | syl5eq 2790 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ∪ {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )}) |
26 | xrltso 12731 | . . . 4 ⊢ < Or ℝ* | |
27 | 26 | supex 9079 | . . 3 ⊢ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) ∈ V |
28 | 27 | unisn 4841 | . 2 ⊢ ∪ {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )} = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) |
29 | 25, 28 | eqtrdi 2794 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2110 Ⅎwnfc 2884 ∩ cin 3865 ⊆ wss 3866 𝒫 cpw 4513 {csn 4541 ∪ cuni 4819 ↦ cmpt 5135 ran crn 5552 ↾ cres 5553 (class class class)co 7213 Fincfn 8626 supcsup 9056 0cc0 10729 +∞cpnf 10864 ℝ*cxr 10866 < clt 10867 [,]cicc 12938 ↾s cress 16784 Σg cgsu 16945 ℝ*𝑠cxrs 17005 tsums ctsu 23023 Σ*cesum 31707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-fi 9027 df-sup 9058 df-inf 9059 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-q 12545 df-xadd 12705 df-ioo 12939 df-ioc 12940 df-ico 12941 df-icc 12942 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-tset 16821 df-ple 16822 df-ds 16824 df-rest 16927 df-topn 16928 df-0g 16946 df-gsum 16947 df-topgen 16948 df-ordt 17006 df-xrs 17007 df-mre 17089 df-mrc 17090 df-acs 17092 df-ps 18072 df-tsr 18073 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-cntz 18711 df-cmn 19172 df-fbas 20360 df-fg 20361 df-top 21791 df-topon 21808 df-topsp 21830 df-bases 21843 df-ntr 21917 df-nei 21995 df-cn 22124 df-haus 22212 df-fil 22743 df-fm 22835 df-flim 22836 df-flf 22837 df-tsms 23024 df-esum 31708 |
This theorem is referenced by: esumel 31727 esumnul 31728 esum0 31729 gsumesum 31739 esumlub 31740 esumcst 31743 esumpcvgval 31758 esumcvg 31766 esum2d 31773 |
Copyright terms: Public domain | W3C validator |