| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumval | Structured version Visualization version GIF version | ||
| Description: Develop the value of the extended sum. (Contributed by Thierry Arnoux, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| esumval.p | ⊢ Ⅎ𝑘𝜑 |
| esumval.0 | ⊢ Ⅎ𝑘𝐴 |
| esumval.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumval.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumval.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) = 𝐶) |
| Ref | Expression |
|---|---|
| esumval | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-esum 34025 | . . 3 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s (0[,]+∞)) | |
| 3 | esumval.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | esumval.p | . . . . . 6 ⊢ Ⅎ𝑘𝜑 | |
| 5 | esumval.0 | . . . . . 6 ⊢ Ⅎ𝑘𝐴 | |
| 6 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑘(0[,]+∞) | |
| 7 | esumval.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 8 | eqid 2730 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 9 | 4, 5, 6, 7, 8 | fmptdF 32587 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 10 | inss1 4203 | . . . . . . . . . . . . . 14 ⊢ (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴 | |
| 11 | 10 | sseli 3945 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) |
| 12 | 11 | elpwid 4575 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ⊆ 𝐴) |
| 13 | 12 | adantl 481 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ⊆ 𝐴) |
| 14 | nfcv 2892 | . . . . . . . . . . . 12 ⊢ Ⅎ𝑘𝑥 | |
| 15 | 5, 14 | resmptf 6013 | . . . . . . . . . . 11 ⊢ (𝑥 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
| 16 | 13, 15 | syl 17 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥) = (𝑘 ∈ 𝑥 ↦ 𝐵)) |
| 17 | 16 | oveq2d 7406 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
| 18 | esumval.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) = 𝐶) | |
| 19 | 17, 18 | eqtr2d 2766 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))) |
| 20 | 19 | mpteq2dva 5203 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)))) |
| 21 | 20 | rneqd 5905 | . . . . . 6 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥)))) |
| 22 | 21 | supeq1d 9404 | . . . . 5 ⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑥))), ℝ*, < )) |
| 23 | 2, 3, 9, 22 | xrge0tsmsd 33009 | . . . 4 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )}) |
| 24 | 23 | unieqd 4887 | . . 3 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )}) |
| 25 | 1, 24 | eqtrid 2777 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ∪ {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )}) |
| 26 | xrltso 13108 | . . . 4 ⊢ < Or ℝ* | |
| 27 | 26 | supex 9422 | . . 3 ⊢ sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) ∈ V |
| 28 | 27 | unisn 4893 | . 2 ⊢ ∪ {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )} = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) |
| 29 | 25, 28 | eqtrdi 2781 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 ↦ cmpt 5191 ran crn 5642 ↾ cres 5643 (class class class)co 7390 Fincfn 8921 supcsup 9398 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 < clt 11215 [,]cicc 13316 ↾s cress 17207 Σg cgsu 17410 ℝ*𝑠cxrs 17470 tsums ctsu 24020 Σ*cesum 34024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-xadd 13080 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ds 17249 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-ordt 17471 df-xrs 17472 df-mre 17554 df-mrc 17555 df-acs 17557 df-ps 18532 df-tsr 18533 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-cntz 19256 df-cmn 19719 df-fbas 21268 df-fg 21269 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-ntr 22914 df-nei 22992 df-cn 23121 df-haus 23209 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-tsms 24021 df-esum 34025 |
| This theorem is referenced by: esumel 34044 esumnul 34045 esum0 34046 gsumesum 34056 esumlub 34057 esumcst 34060 esumpcvgval 34075 esumcvg 34083 esum2d 34090 |
| Copyright terms: Public domain | W3C validator |