Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumval Structured version   Visualization version   GIF version

Theorem esumval 32981
Description: Develop the value of the extended sum. (Contributed by Thierry Arnoux, 4-Jan-2017.)
Hypotheses
Ref Expression
esumval.p 𝑘𝜑
esumval.0 𝑘𝐴
esumval.1 (𝜑𝐴𝑉)
esumval.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumval.3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = 𝐶)
Assertion
Ref Expression
esumval (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ))
Distinct variable groups:   𝑥,𝑘   𝑥,𝐴   𝜑,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem esumval
StepHypRef Expression
1 df-esum 32963 . . 3 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 eqid 2733 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
3 esumval.1 . . . . 5 (𝜑𝐴𝑉)
4 esumval.p . . . . . 6 𝑘𝜑
5 esumval.0 . . . . . 6 𝑘𝐴
6 nfcv 2904 . . . . . 6 𝑘(0[,]+∞)
7 esumval.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
8 eqid 2733 . . . . . 6 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
94, 5, 6, 7, 8fmptdF 31858 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
10 inss1 4226 . . . . . . . . . . . . . 14 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
1110sseli 3976 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
1211elpwid 4609 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1312adantl 483 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
14 nfcv 2904 . . . . . . . . . . . 12 𝑘𝑥
155, 14resmptf 6036 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
1613, 15syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
1716oveq2d 7419 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
18 esumval.3 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = 𝐶)
1917, 18eqtr2d 2774 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥)))
2019mpteq2dva 5246 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥))))
2120rneqd 5934 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥))))
2221supeq1d 9436 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥))), ℝ*, < ))
232, 3, 9, 22xrge0tsmsd 32186 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )})
2423unieqd 4920 . . 3 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )})
251, 24eqtrid 2785 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )})
26 xrltso 13115 . . . 4 < Or ℝ*
2726supex 9453 . . 3 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) ∈ V
2827unisn 4928 . 2 {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )} = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )
2925, 28eqtrdi 2789 1 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wnf 1786  wcel 2107  wnfc 2884  cin 3945  wss 3946  𝒫 cpw 4600  {csn 4626   cuni 4906  cmpt 5229  ran crn 5675  cres 5676  (class class class)co 7403  Fincfn 8934  supcsup 9430  0cc0 11105  +∞cpnf 11240  *cxr 11242   < clt 11243  [,]cicc 13322  s cress 17168   Σg cgsu 17381  *𝑠cxrs 17441   tsums ctsu 23611  Σ*cesum 32962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-iin 4998  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8141  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-4 12272  df-5 12273  df-6 12274  df-7 12275  df-8 12276  df-9 12277  df-n0 12468  df-z 12554  df-dec 12673  df-uz 12818  df-q 12928  df-xadd 13088  df-ioo 13323  df-ioc 13324  df-ico 13325  df-icc 13326  df-fz 13480  df-fzo 13623  df-seq 13962  df-hash 14286  df-struct 17075  df-sets 17092  df-slot 17110  df-ndx 17122  df-base 17140  df-ress 17169  df-plusg 17205  df-mulr 17206  df-tset 17211  df-ple 17212  df-ds 17214  df-rest 17363  df-topn 17364  df-0g 17382  df-gsum 17383  df-topgen 17384  df-ordt 17442  df-xrs 17443  df-mre 17525  df-mrc 17526  df-acs 17528  df-ps 18514  df-tsr 18515  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-submnd 18667  df-cntz 19174  df-cmn 19642  df-fbas 20925  df-fg 20926  df-top 22377  df-topon 22394  df-topsp 22416  df-bases 22430  df-ntr 22505  df-nei 22583  df-cn 22712  df-haus 22800  df-fil 23331  df-fm 23423  df-flim 23424  df-flf 23425  df-tsms 23612  df-esum 32963
This theorem is referenced by:  esumel  32982  esumnul  32983  esum0  32984  gsumesum  32994  esumlub  32995  esumcst  32998  esumpcvgval  33013  esumcvg  33021  esum2d  33028
  Copyright terms: Public domain W3C validator