Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumval Structured version   Visualization version   GIF version

Theorem esumval 30922
Description: Develop the value of the extended sum. (Contributed by Thierry Arnoux, 4-Jan-2017.)
Hypotheses
Ref Expression
esumval.p 𝑘𝜑
esumval.0 𝑘𝐴
esumval.1 (𝜑𝐴𝑉)
esumval.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumval.3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = 𝐶)
Assertion
Ref Expression
esumval (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ))
Distinct variable groups:   𝑥,𝑘   𝑥,𝐴   𝜑,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem esumval
StepHypRef Expression
1 df-esum 30904 . . 3 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 eqid 2795 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
3 esumval.1 . . . . 5 (𝜑𝐴𝑉)
4 esumval.p . . . . . 6 𝑘𝜑
5 esumval.0 . . . . . 6 𝑘𝐴
6 nfcv 2949 . . . . . 6 𝑘(0[,]+∞)
7 esumval.2 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
8 eqid 2795 . . . . . 6 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
94, 5, 6, 7, 8fmptdF 30091 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
10 inss1 4125 . . . . . . . . . . . . . 14 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
1110sseli 3885 . . . . . . . . . . . . 13 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
1211elpwid 4465 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝐴)
1312adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴)
14 nfcv 2949 . . . . . . . . . . . 12 𝑘𝑥
155, 14resmptf 5788 . . . . . . . . . . 11 (𝑥𝐴 → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
1613, 15syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑘𝐴𝐵) ↾ 𝑥) = (𝑘𝑥𝐵))
1716oveq2d 7032 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
18 esumval.3 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = 𝐶)
1917, 18eqtr2d 2832 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐶 = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥)))
2019mpteq2dva 5055 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥))))
2120rneqd 5690 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶) = ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥))))
2221supeq1d 8756 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑥))), ℝ*, < ))
232, 3, 9, 22xrge0tsmsd 30503 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )})
2423unieqd 4755 . . 3 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )})
251, 24syl5eq 2843 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )})
26 xrltso 12384 . . . 4 < Or ℝ*
2726supex 8773 . . 3 sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ) ∈ V
2827unisn 4761 . 2 {sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )} = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < )
2925, 28syl6eq 2847 1 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 𝐶), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wnf 1765  wcel 2081  wnfc 2933  cin 3858  wss 3859  𝒫 cpw 4453  {csn 4472   cuni 4745  cmpt 5041  ran crn 5444  cres 5445  (class class class)co 7016  Fincfn 8357  supcsup 8750  0cc0 10383  +∞cpnf 10518  *cxr 10520   < clt 10521  [,]cicc 12591  s cress 16313   Σg cgsu 16543  *𝑠cxrs 16602   tsums ctsu 22417  Σ*cesum 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-xadd 12358  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-hash 13541  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-tset 16413  df-ple 16414  df-ds 16416  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-ordt 16603  df-xrs 16604  df-mre 16686  df-mrc 16687  df-acs 16689  df-ps 17639  df-tsr 17640  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-cntz 18188  df-cmn 18635  df-fbas 20224  df-fg 20225  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-ntr 21312  df-nei 21390  df-cn 21519  df-haus 21607  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-tsms 22418  df-esum 30904
This theorem is referenced by:  esumel  30923  esumnul  30924  esum0  30925  gsumesum  30935  esumlub  30936  esumcst  30939  esumpcvgval  30954  esumcvg  30962  esum2d  30969
  Copyright terms: Public domain W3C validator