Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme29b Structured version   Visualization version   GIF version

Theorem cdleme29b 40352
Description: Transform cdleme28 40350. (Compare cdleme25b 40331.) TODO: FIX COMMENT. (Contributed by NM, 7-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
Assertion
Ref Expression
cdleme29b ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑣𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑣 = (𝐶 (𝑋 𝑊))))
Distinct variable groups:   𝑢,𝑠,𝑧,𝐴   𝐵,𝑠,𝑢,𝑧   𝑢,𝐹   𝐻,𝑠,𝑧   ,𝑠,𝑢,𝑧   𝐾,𝑠,𝑧   ,𝑠,𝑢,𝑧   ,𝑠,𝑢,𝑧   𝑢,𝑁   𝑃,𝑠,𝑢,𝑧   𝑄,𝑠,𝑢,𝑧   𝑈,𝑠,𝑢,𝑧   𝑊,𝑠,𝑢,𝑧   𝑋,𝑠   𝑣,𝐴   𝑣,𝐵   𝑣,   𝑣,   𝑣,   𝑣,𝑃   𝑣,𝑄   𝑣,𝑈   𝑣,𝑊   𝑣,𝐶   𝑣,𝑠,𝑍,𝑢   𝑧,𝑣,𝑋
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑠)   𝐷(𝑧,𝑣,𝑢,𝑠)   𝐹(𝑧,𝑣,𝑠)   𝐻(𝑣,𝑢)   𝐾(𝑣,𝑢)   𝑁(𝑧,𝑣,𝑠)   𝑋(𝑢)   𝑍(𝑧)

Proof of Theorem cdleme29b
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cdleme26.b . . 3 𝐵 = (Base‘𝐾)
2 cdleme26.l . . 3 = (le‘𝐾)
3 cdleme26.j . . 3 = (join‘𝐾)
4 cdleme26.m . . 3 = (meet‘𝐾)
5 cdleme26.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdleme26.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdleme27.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdleme27.f . . 3 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
9 cdleme27.z . . 3 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
10 cdleme27.n . . 3 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
11 cdleme27.d . . 3 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
12 cdleme27.c . . 3 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdleme29ex 40351 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵))
14 eqid 2734 . . 3 ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
15 eqid 2734 . . 3 ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))) = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
16 eqid 2734 . . 3 (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))) = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))))
17 eqid 2734 . . 3 if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) = if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17cdleme28 40350 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → (𝐶 (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊))))
19 breq1 5126 . . . . . 6 (𝑠 = 𝑡 → (𝑠 𝑊𝑡 𝑊))
2019notbid 318 . . . . 5 (𝑠 = 𝑡 → (¬ 𝑠 𝑊 ↔ ¬ 𝑡 𝑊))
21 oveq1 7420 . . . . . 6 (𝑠 = 𝑡 → (𝑠 (𝑋 𝑊)) = (𝑡 (𝑋 𝑊)))
2221eqeq1d 2736 . . . . 5 (𝑠 = 𝑡 → ((𝑠 (𝑋 𝑊)) = 𝑋 ↔ (𝑡 (𝑋 𝑊)) = 𝑋))
2320, 22anbi12d 632 . . . 4 (𝑠 = 𝑡 → ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ↔ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)))
2412oveq1i 7423 . . . . 5 (𝐶 (𝑋 𝑊)) = (if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) (𝑋 𝑊))
25 breq1 5126 . . . . . . 7 (𝑠 = 𝑡 → (𝑠 (𝑃 𝑄) ↔ 𝑡 (𝑃 𝑄)))
26 oveq1 7420 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑡 → (𝑠 𝑧) = (𝑡 𝑧))
2726oveq1d 7428 . . . . . . . . . . . . . . 15 (𝑠 = 𝑡 → ((𝑠 𝑧) 𝑊) = ((𝑡 𝑧) 𝑊))
2827oveq2d 7429 . . . . . . . . . . . . . 14 (𝑠 = 𝑡 → (𝑍 ((𝑠 𝑧) 𝑊)) = (𝑍 ((𝑡 𝑧) 𝑊)))
2928oveq2d 7429 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊))) = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))
3010, 29eqtrid 2781 . . . . . . . . . . . 12 (𝑠 = 𝑡𝑁 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))
3130eqeq2d 2745 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝑢 = 𝑁𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))))
3231imbi2d 340 . . . . . . . . . 10 (𝑠 = 𝑡 → (((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁) ↔ ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))))
3332ralbidv 3165 . . . . . . . . 9 (𝑠 = 𝑡 → (∀𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁) ↔ ∀𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))))
3433riotabidv 7372 . . . . . . . 8 (𝑠 = 𝑡 → (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁)) = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))))
3511, 34eqtrid 2781 . . . . . . 7 (𝑠 = 𝑡𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))))
36 oveq1 7420 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑠 𝑈) = (𝑡 𝑈))
37 oveq2 7421 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝑃 𝑠) = (𝑃 𝑡))
3837oveq1d 7428 . . . . . . . . . 10 (𝑠 = 𝑡 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑡) 𝑊))
3938oveq2d 7429 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑡) 𝑊)))
4036, 39oveq12d 7431 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
418, 40eqtrid 2781 . . . . . . 7 (𝑠 = 𝑡𝐹 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
4225, 35, 41ifbieq12d 4534 . . . . . 6 (𝑠 = 𝑡 → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))))
4342oveq1d 7428 . . . . 5 (𝑠 = 𝑡 → (if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊)))
4424, 43eqtrid 2781 . . . 4 (𝑠 = 𝑡 → (𝐶 (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊)))
4523, 44reusv3 5385 . . 3 (∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵) → (∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → (𝐶 (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊))) ↔ ∃𝑣𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑣 = (𝐶 (𝑋 𝑊)))))
4645biimpd 229 . 2 (∃𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (𝐶 (𝑋 𝑊)) ∈ 𝐵) → (∀𝑠𝐴𝑡𝐴 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑡 𝑊 ∧ (𝑡 (𝑋 𝑊)) = 𝑋)) → (𝐶 (𝑋 𝑊)) = (if(𝑡 (𝑃 𝑄), (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))), ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))) (𝑋 𝑊))) → ∃𝑣𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑣 = (𝐶 (𝑋 𝑊)))))
4713, 18, 46sylc 65 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑣𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑋 𝑊)) = 𝑋) → 𝑣 = (𝐶 (𝑋 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  ifcif 4505   class class class wbr 5123  cfv 6541  crio 7369  (class class class)co 7413  Basecbs 17230  lecple 17281  joincjn 18328  meetcmee 18329  Atomscatm 39239  HLchlt 39326  LHypclh 39961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-riotaBAD 38929
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-undef 8280  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39152  df-ol 39154  df-oml 39155  df-covers 39242  df-ats 39243  df-atl 39274  df-cvlat 39298  df-hlat 39327  df-llines 39475  df-lplanes 39476  df-lvols 39477  df-lines 39478  df-psubsp 39480  df-pmap 39481  df-padd 39773  df-lhyp 39965
This theorem is referenced by:  cdleme29c  40353
  Copyright terms: Public domain W3C validator