Step | Hyp | Ref
| Expression |
1 | | cdleme26.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdleme26.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
3 | | cdleme26.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
4 | | cdleme26.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
5 | | cdleme26.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdleme26.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | cdleme27.u |
. . 3
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
8 | | cdleme27.f |
. . 3
⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
9 | | cdleme27.z |
. . 3
⊢ 𝑍 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
10 | | cdleme27.n |
. . 3
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊))) |
11 | | cdleme27.d |
. . 3
⊢ 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
12 | | cdleme27.c |
. . 3
⊢ 𝐶 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | cdleme29ex 38315 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵)) |
14 | | eqid 2738 |
. . 3
⊢ ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
15 | | eqid 2738 |
. . 3
⊢ ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) |
16 | | eqid 2738 |
. . 3
⊢
(℩𝑢
∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))) = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))) |
17 | | eqid 2738 |
. . 3
⊢ if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) = if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 14, 15, 16, 17 | cdleme28 38314 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊)))) |
19 | | breq1 5073 |
. . . . . 6
⊢ (𝑠 = 𝑡 → (𝑠 ≤ 𝑊 ↔ 𝑡 ≤ 𝑊)) |
20 | 19 | notbid 317 |
. . . . 5
⊢ (𝑠 = 𝑡 → (¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑡 ≤ 𝑊)) |
21 | | oveq1 7262 |
. . . . . 6
⊢ (𝑠 = 𝑡 → (𝑠 ∨ (𝑋 ∧ 𝑊)) = (𝑡 ∨ (𝑋 ∧ 𝑊))) |
22 | 21 | eqeq1d 2740 |
. . . . 5
⊢ (𝑠 = 𝑡 → ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ↔ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
23 | 20, 22 | anbi12d 630 |
. . . 4
⊢ (𝑠 = 𝑡 → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ↔ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
24 | 12 | oveq1i 7265 |
. . . . 5
⊢ (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) ∨ (𝑋 ∧ 𝑊)) |
25 | | breq1 5073 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (𝑠 ≤ (𝑃 ∨ 𝑄) ↔ 𝑡 ≤ (𝑃 ∨ 𝑄))) |
26 | | oveq1 7262 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑡 → (𝑠 ∨ 𝑧) = (𝑡 ∨ 𝑧)) |
27 | 26 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑡 → ((𝑠 ∨ 𝑧) ∧ 𝑊) = ((𝑡 ∨ 𝑧) ∧ 𝑊)) |
28 | 27 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊)) = (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) |
29 | 28 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))) |
30 | 10, 29 | syl5eq 2791 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))) |
31 | 30 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (𝑢 = 𝑁 ↔ 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))) |
32 | 31 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → (((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁) ↔ ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))))) |
33 | 32 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁) ↔ ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))))) |
34 | 33 | riotabidv 7214 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))))) |
35 | 11, 34 | syl5eq 2791 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))))) |
36 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (𝑠 ∨ 𝑈) = (𝑡 ∨ 𝑈)) |
37 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑡)) |
38 | 37 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → ((𝑃 ∨ 𝑠) ∧ 𝑊) = ((𝑃 ∨ 𝑡) ∧ 𝑊)) |
39 | 38 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊)) = (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
40 | 36, 39 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) |
41 | 8, 40 | syl5eq 2791 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → 𝐹 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) |
42 | 25, 35, 41 | ifbieq12d 4484 |
. . . . . 6
⊢ (𝑠 = 𝑡 → if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) = if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))))) |
43 | 42 | oveq1d 7270 |
. . . . 5
⊢ (𝑠 = 𝑡 → (if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊))) |
44 | 24, 43 | syl5eq 2791 |
. . . 4
⊢ (𝑠 = 𝑡 → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊))) |
45 | 23, 44 | reusv3 5323 |
. . 3
⊢
(∃𝑠 ∈
𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) → (∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊))) ↔ ∃𝑣 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑣 = (𝐶 ∨ (𝑋 ∧ 𝑊))))) |
46 | 45 | biimpd 228 |
. 2
⊢
(∃𝑠 ∈
𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) → (∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊))) → ∃𝑣 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑣 = (𝐶 ∨ (𝑋 ∧ 𝑊))))) |
47 | 13, 18, 46 | sylc 65 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑣 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑣 = (𝐶 ∨ (𝑋 ∧ 𝑊)))) |