| Step | Hyp | Ref
| Expression |
| 1 | | cdleme26.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | cdleme26.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
| 3 | | cdleme26.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
| 4 | | cdleme26.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
| 5 | | cdleme26.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | | cdleme26.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | cdleme27.u |
. . 3
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 8 | | cdleme27.f |
. . 3
⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
| 9 | | cdleme27.z |
. . 3
⊢ 𝑍 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
| 10 | | cdleme27.n |
. . 3
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊))) |
| 11 | | cdleme27.d |
. . 3
⊢ 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
| 12 | | cdleme27.c |
. . 3
⊢ 𝐶 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12 | cdleme29ex 40376 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵)) |
| 14 | | eqid 2737 |
. . 3
⊢ ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| 15 | | eqid 2737 |
. . 3
⊢ ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) |
| 16 | | eqid 2737 |
. . 3
⊢
(℩𝑢
∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))) = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))) |
| 17 | | eqid 2737 |
. . 3
⊢ if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) = if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 14, 15, 16, 17 | cdleme28 40375 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊)))) |
| 19 | | breq1 5146 |
. . . . . 6
⊢ (𝑠 = 𝑡 → (𝑠 ≤ 𝑊 ↔ 𝑡 ≤ 𝑊)) |
| 20 | 19 | notbid 318 |
. . . . 5
⊢ (𝑠 = 𝑡 → (¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑡 ≤ 𝑊)) |
| 21 | | oveq1 7438 |
. . . . . 6
⊢ (𝑠 = 𝑡 → (𝑠 ∨ (𝑋 ∧ 𝑊)) = (𝑡 ∨ (𝑋 ∧ 𝑊))) |
| 22 | 21 | eqeq1d 2739 |
. . . . 5
⊢ (𝑠 = 𝑡 → ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ↔ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
| 23 | 20, 22 | anbi12d 632 |
. . . 4
⊢ (𝑠 = 𝑡 → ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ↔ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋))) |
| 24 | 12 | oveq1i 7441 |
. . . . 5
⊢ (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) ∨ (𝑋 ∧ 𝑊)) |
| 25 | | breq1 5146 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → (𝑠 ≤ (𝑃 ∨ 𝑄) ↔ 𝑡 ≤ (𝑃 ∨ 𝑄))) |
| 26 | | oveq1 7438 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑡 → (𝑠 ∨ 𝑧) = (𝑡 ∨ 𝑧)) |
| 27 | 26 | oveq1d 7446 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 = 𝑡 → ((𝑠 ∨ 𝑧) ∧ 𝑊) = ((𝑡 ∨ 𝑧) ∧ 𝑊)) |
| 28 | 27 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑡 → (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊)) = (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) |
| 29 | 28 | oveq2d 7447 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))) |
| 30 | 10, 29 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))) |
| 31 | 30 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (𝑢 = 𝑁 ↔ 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))) |
| 32 | 31 | imbi2d 340 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → (((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁) ↔ ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))))) |
| 33 | 32 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁) ↔ ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))))) |
| 34 | 33 | riotabidv 7390 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))))) |
| 35 | 11, 34 | eqtrid 2789 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊)))))) |
| 36 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (𝑠 ∨ 𝑈) = (𝑡 ∨ 𝑈)) |
| 37 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (𝑃 ∨ 𝑠) = (𝑃 ∨ 𝑡)) |
| 38 | 37 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → ((𝑃 ∨ 𝑠) ∧ 𝑊) = ((𝑃 ∨ 𝑡) ∧ 𝑊)) |
| 39 | 38 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊)) = (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
| 40 | 36, 39 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) |
| 41 | 8, 40 | eqtrid 2789 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → 𝐹 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) |
| 42 | 25, 35, 41 | ifbieq12d 4554 |
. . . . . 6
⊢ (𝑠 = 𝑡 → if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) = if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))))) |
| 43 | 42 | oveq1d 7446 |
. . . . 5
⊢ (𝑠 = 𝑡 → (if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊))) |
| 44 | 24, 43 | eqtrid 2789 |
. . . 4
⊢ (𝑠 = 𝑡 → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊))) |
| 45 | 23, 44 | reusv3 5405 |
. . 3
⊢
(∃𝑠 ∈
𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) → (∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊))) ↔ ∃𝑣 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑣 = (𝐶 ∨ (𝑋 ∧ 𝑊))))) |
| 46 | 45 | biimpd 229 |
. 2
⊢
(∃𝑠 ∈
𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝐶 ∨ (𝑋 ∧ 𝑊)) ∈ 𝐵) → (∀𝑠 ∈ 𝐴 ∀𝑡 ∈ 𝐴 (((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (¬ 𝑡 ≤ 𝑊 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (if(𝑡 ≤ (𝑃 ∨ 𝑄), (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))))), ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)))) ∨ (𝑋 ∧ 𝑊))) → ∃𝑣 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑣 = (𝐶 ∨ (𝑋 ∧ 𝑊))))) |
| 47 | 13, 18, 46 | sylc 65 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ∃𝑣 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) → 𝑣 = (𝐶 ∨ (𝑋 ∧ 𝑊)))) |