MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfo Structured version   Visualization version   GIF version

Theorem iunfo 10430
Description: Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.)
Hypothesis
Ref Expression
iunfo.1 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
Assertion
Ref Expression
iunfo (2nd𝑇):𝑇onto 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥)

Proof of Theorem iunfo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo2nd 7942 . . . 4 2nd :V–onto→V
2 fof 6735 . . . 4 (2nd :V–onto→V → 2nd :V⟶V)
3 ffn 6651 . . . 4 (2nd :V⟶V → 2nd Fn V)
41, 2, 3mp2b 10 . . 3 2nd Fn V
5 ssv 3954 . . 3 𝑇 ⊆ V
6 fnssres 6604 . . 3 ((2nd Fn V ∧ 𝑇 ⊆ V) → (2nd𝑇) Fn 𝑇)
74, 5, 6mp2an 692 . 2 (2nd𝑇) Fn 𝑇
8 df-ima 5627 . . 3 (2nd𝑇) = ran (2nd𝑇)
9 iunfo.1 . . . . . . . . . . 11 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
109eleq2i 2823 . . . . . . . . . 10 (𝑧𝑇𝑧 𝑥𝐴 ({𝑥} × 𝐵))
11 eliun 4943 . . . . . . . . . 10 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
1210, 11bitri 275 . . . . . . . . 9 (𝑧𝑇 ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
13 xp2nd 7954 . . . . . . . . . . 11 (𝑧 ∈ ({𝑥} × 𝐵) → (2nd𝑧) ∈ 𝐵)
14 eleq1 2819 . . . . . . . . . . 11 ((2nd𝑧) = 𝑦 → ((2nd𝑧) ∈ 𝐵𝑦𝐵))
1513, 14imbitrid 244 . . . . . . . . . 10 ((2nd𝑧) = 𝑦 → (𝑧 ∈ ({𝑥} × 𝐵) → 𝑦𝐵))
1615reximdv 3147 . . . . . . . . 9 ((2nd𝑧) = 𝑦 → (∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵) → ∃𝑥𝐴 𝑦𝐵))
1712, 16biimtrid 242 . . . . . . . 8 ((2nd𝑧) = 𝑦 → (𝑧𝑇 → ∃𝑥𝐴 𝑦𝐵))
1817impcom 407 . . . . . . 7 ((𝑧𝑇 ∧ (2nd𝑧) = 𝑦) → ∃𝑥𝐴 𝑦𝐵)
1918rexlimiva 3125 . . . . . 6 (∃𝑧𝑇 (2nd𝑧) = 𝑦 → ∃𝑥𝐴 𝑦𝐵)
20 nfiu1 4975 . . . . . . . . 9 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
219, 20nfcxfr 2892 . . . . . . . 8 𝑥𝑇
22 nfv 1915 . . . . . . . 8 𝑥(2nd𝑧) = 𝑦
2321, 22nfrexw 3280 . . . . . . 7 𝑥𝑧𝑇 (2nd𝑧) = 𝑦
24 ssiun2 4994 . . . . . . . . . . . 12 (𝑥𝐴 → ({𝑥} × 𝐵) ⊆ 𝑥𝐴 ({𝑥} × 𝐵))
2524adantr 480 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ({𝑥} × 𝐵) ⊆ 𝑥𝐴 ({𝑥} × 𝐵))
26 simpr 484 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵) → 𝑦𝐵)
27 vsnid 4613 . . . . . . . . . . . . 13 𝑥 ∈ {𝑥}
28 opelxp 5650 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ ({𝑥} × 𝐵) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦𝐵))
2927, 28mpbiran 709 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ({𝑥} × 𝐵) ↔ 𝑦𝐵)
3026, 29sylibr 234 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ ({𝑥} × 𝐵))
3125, 30sseldd 3930 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
3231, 9eleqtrrdi 2842 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝑇)
33 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
34 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
3533, 34op2nd 7930 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
36 fveqeq2 6831 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2nd𝑧) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
3736rspcev 3572 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ 𝑇 ∧ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦) → ∃𝑧𝑇 (2nd𝑧) = 𝑦)
3832, 35, 37sylancl 586 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ∃𝑧𝑇 (2nd𝑧) = 𝑦)
3938ex 412 . . . . . . 7 (𝑥𝐴 → (𝑦𝐵 → ∃𝑧𝑇 (2nd𝑧) = 𝑦))
4023, 39rexlimi 3232 . . . . . 6 (∃𝑥𝐴 𝑦𝐵 → ∃𝑧𝑇 (2nd𝑧) = 𝑦)
4119, 40impbii 209 . . . . 5 (∃𝑧𝑇 (2nd𝑧) = 𝑦 ↔ ∃𝑥𝐴 𝑦𝐵)
42 fvelimab 6894 . . . . . 6 ((2nd Fn V ∧ 𝑇 ⊆ V) → (𝑦 ∈ (2nd𝑇) ↔ ∃𝑧𝑇 (2nd𝑧) = 𝑦))
434, 5, 42mp2an 692 . . . . 5 (𝑦 ∈ (2nd𝑇) ↔ ∃𝑧𝑇 (2nd𝑧) = 𝑦)
44 eliun 4943 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
4541, 43, 443bitr4i 303 . . . 4 (𝑦 ∈ (2nd𝑇) ↔ 𝑦 𝑥𝐴 𝐵)
4645eqriv 2728 . . 3 (2nd𝑇) = 𝑥𝐴 𝐵
478, 46eqtr3i 2756 . 2 ran (2nd𝑇) = 𝑥𝐴 𝐵
48 df-fo 6487 . 2 ((2nd𝑇):𝑇onto 𝑥𝐴 𝐵 ↔ ((2nd𝑇) Fn 𝑇 ∧ ran (2nd𝑇) = 𝑥𝐴 𝐵))
497, 47, 48mpbir2an 711 1 (2nd𝑇):𝑇onto 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  wss 3897  {csn 4573  cop 4579   ciun 4939   × cxp 5612  ran crn 5615  cres 5616  cima 5617   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-2nd 7922
This theorem is referenced by:  iundomg  10432  2ndresdjuf1o  32632
  Copyright terms: Public domain W3C validator