MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfo Structured version   Visualization version   GIF version

Theorem iunfo 10039
Description: Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.)
Hypothesis
Ref Expression
iunfo.1 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
Assertion
Ref Expression
iunfo (2nd𝑇):𝑇onto 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑇(𝑥)

Proof of Theorem iunfo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo2nd 7735 . . . 4 2nd :V–onto→V
2 fof 6592 . . . 4 (2nd :V–onto→V → 2nd :V⟶V)
3 ffn 6504 . . . 4 (2nd :V⟶V → 2nd Fn V)
41, 2, 3mp2b 10 . . 3 2nd Fn V
5 ssv 3901 . . 3 𝑇 ⊆ V
6 fnssres 6459 . . 3 ((2nd Fn V ∧ 𝑇 ⊆ V) → (2nd𝑇) Fn 𝑇)
74, 5, 6mp2an 692 . 2 (2nd𝑇) Fn 𝑇
8 df-ima 5538 . . 3 (2nd𝑇) = ran (2nd𝑇)
9 iunfo.1 . . . . . . . . . . 11 𝑇 = 𝑥𝐴 ({𝑥} × 𝐵)
109eleq2i 2824 . . . . . . . . . 10 (𝑧𝑇𝑧 𝑥𝐴 ({𝑥} × 𝐵))
11 eliun 4885 . . . . . . . . . 10 (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
1210, 11bitri 278 . . . . . . . . 9 (𝑧𝑇 ↔ ∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵))
13 xp2nd 7747 . . . . . . . . . . 11 (𝑧 ∈ ({𝑥} × 𝐵) → (2nd𝑧) ∈ 𝐵)
14 eleq1 2820 . . . . . . . . . . 11 ((2nd𝑧) = 𝑦 → ((2nd𝑧) ∈ 𝐵𝑦𝐵))
1513, 14syl5ib 247 . . . . . . . . . 10 ((2nd𝑧) = 𝑦 → (𝑧 ∈ ({𝑥} × 𝐵) → 𝑦𝐵))
1615reximdv 3183 . . . . . . . . 9 ((2nd𝑧) = 𝑦 → (∃𝑥𝐴 𝑧 ∈ ({𝑥} × 𝐵) → ∃𝑥𝐴 𝑦𝐵))
1712, 16syl5bi 245 . . . . . . . 8 ((2nd𝑧) = 𝑦 → (𝑧𝑇 → ∃𝑥𝐴 𝑦𝐵))
1817impcom 411 . . . . . . 7 ((𝑧𝑇 ∧ (2nd𝑧) = 𝑦) → ∃𝑥𝐴 𝑦𝐵)
1918rexlimiva 3191 . . . . . 6 (∃𝑧𝑇 (2nd𝑧) = 𝑦 → ∃𝑥𝐴 𝑦𝐵)
20 nfiu1 4915 . . . . . . . . 9 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
219, 20nfcxfr 2897 . . . . . . . 8 𝑥𝑇
22 nfv 1921 . . . . . . . 8 𝑥(2nd𝑧) = 𝑦
2321, 22nfrex 3219 . . . . . . 7 𝑥𝑧𝑇 (2nd𝑧) = 𝑦
24 ssiun2 4933 . . . . . . . . . . . 12 (𝑥𝐴 → ({𝑥} × 𝐵) ⊆ 𝑥𝐴 ({𝑥} × 𝐵))
2524adantr 484 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ({𝑥} × 𝐵) ⊆ 𝑥𝐴 ({𝑥} × 𝐵))
26 simpr 488 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵) → 𝑦𝐵)
27 vsnid 4553 . . . . . . . . . . . . 13 𝑥 ∈ {𝑥}
28 opelxp 5561 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ ({𝑥} × 𝐵) ↔ (𝑥 ∈ {𝑥} ∧ 𝑦𝐵))
2927, 28mpbiran 709 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ({𝑥} × 𝐵) ↔ 𝑦𝐵)
3026, 29sylibr 237 . . . . . . . . . . 11 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ ({𝑥} × 𝐵))
3125, 30sseldd 3878 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
3231, 9eleqtrrdi 2844 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ 𝑇)
33 vex 3402 . . . . . . . . . 10 𝑥 ∈ V
34 vex 3402 . . . . . . . . . 10 𝑦 ∈ V
3533, 34op2nd 7723 . . . . . . . . 9 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
36 fveqeq2 6683 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2nd𝑧) = 𝑦 ↔ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦))
3736rspcev 3526 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ 𝑇 ∧ (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦) → ∃𝑧𝑇 (2nd𝑧) = 𝑦)
3832, 35, 37sylancl 589 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ∃𝑧𝑇 (2nd𝑧) = 𝑦)
3938ex 416 . . . . . . 7 (𝑥𝐴 → (𝑦𝐵 → ∃𝑧𝑇 (2nd𝑧) = 𝑦))
4023, 39rexlimi 3225 . . . . . 6 (∃𝑥𝐴 𝑦𝐵 → ∃𝑧𝑇 (2nd𝑧) = 𝑦)
4119, 40impbii 212 . . . . 5 (∃𝑧𝑇 (2nd𝑧) = 𝑦 ↔ ∃𝑥𝐴 𝑦𝐵)
42 fvelimab 6741 . . . . . 6 ((2nd Fn V ∧ 𝑇 ⊆ V) → (𝑦 ∈ (2nd𝑇) ↔ ∃𝑧𝑇 (2nd𝑧) = 𝑦))
434, 5, 42mp2an 692 . . . . 5 (𝑦 ∈ (2nd𝑇) ↔ ∃𝑧𝑇 (2nd𝑧) = 𝑦)
44 eliun 4885 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
4541, 43, 443bitr4i 306 . . . 4 (𝑦 ∈ (2nd𝑇) ↔ 𝑦 𝑥𝐴 𝐵)
4645eqriv 2735 . . 3 (2nd𝑇) = 𝑥𝐴 𝐵
478, 46eqtr3i 2763 . 2 ran (2nd𝑇) = 𝑥𝐴 𝐵
48 df-fo 6345 . 2 ((2nd𝑇):𝑇onto 𝑥𝐴 𝐵 ↔ ((2nd𝑇) Fn 𝑇 ∧ ran (2nd𝑇) = 𝑥𝐴 𝐵))
497, 47, 48mpbir2an 711 1 (2nd𝑇):𝑇onto 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1542  wcel 2114  wrex 3054  Vcvv 3398  wss 3843  {csn 4516  cop 4522   ciun 4881   × cxp 5523  ran crn 5526  cres 5527  cima 5528   Fn wfn 6334  wf 6335  ontowfo 6337  cfv 6339  2nd c2nd 7713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fo 6345  df-fv 6347  df-2nd 7715
This theorem is referenced by:  iundomg  10041  2ndresdjuf1o  30561
  Copyright terms: Public domain W3C validator