MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunfo Structured version   Visualization version   GIF version

Theorem iunfo 10534
Description: Existence of an onto function from a disjoint union to a union. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 18-Jan-2014.)
Hypothesis
Ref Expression
iunfo.1 š‘‡ = āˆŖ š‘„ āˆˆ š“ ({š‘„} Ɨ šµ)
Assertion
Ref Expression
iunfo (2nd ā†¾ š‘‡):š‘‡ā€“ontoā†’āˆŖ š‘„ āˆˆ š“ šµ
Distinct variable group:   š‘„,š“
Allowed substitution hints:   šµ(š‘„)   š‘‡(š‘„)

Proof of Theorem iunfo
Dummy variables š‘¦ š‘§ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fo2nd 7996 . . . 4 2nd :Vā€“ontoā†’V
2 fof 6806 . . . 4 (2nd :Vā€“ontoā†’V ā†’ 2nd :VāŸ¶V)
3 ffn 6718 . . . 4 (2nd :VāŸ¶V ā†’ 2nd Fn V)
41, 2, 3mp2b 10 . . 3 2nd Fn V
5 ssv 4007 . . 3 š‘‡ āŠ† V
6 fnssres 6674 . . 3 ((2nd Fn V āˆ§ š‘‡ āŠ† V) ā†’ (2nd ā†¾ š‘‡) Fn š‘‡)
74, 5, 6mp2an 691 . 2 (2nd ā†¾ š‘‡) Fn š‘‡
8 df-ima 5690 . . 3 (2nd ā€œ š‘‡) = ran (2nd ā†¾ š‘‡)
9 iunfo.1 . . . . . . . . . . 11 š‘‡ = āˆŖ š‘„ āˆˆ š“ ({š‘„} Ɨ šµ)
109eleq2i 2826 . . . . . . . . . 10 (š‘§ āˆˆ š‘‡ ā†” š‘§ āˆˆ āˆŖ š‘„ āˆˆ š“ ({š‘„} Ɨ šµ))
11 eliun 5002 . . . . . . . . . 10 (š‘§ āˆˆ āˆŖ š‘„ āˆˆ š“ ({š‘„} Ɨ šµ) ā†” āˆƒš‘„ āˆˆ š“ š‘§ āˆˆ ({š‘„} Ɨ šµ))
1210, 11bitri 275 . . . . . . . . 9 (š‘§ āˆˆ š‘‡ ā†” āˆƒš‘„ āˆˆ š“ š‘§ āˆˆ ({š‘„} Ɨ šµ))
13 xp2nd 8008 . . . . . . . . . . 11 (š‘§ āˆˆ ({š‘„} Ɨ šµ) ā†’ (2nd ā€˜š‘§) āˆˆ šµ)
14 eleq1 2822 . . . . . . . . . . 11 ((2nd ā€˜š‘§) = š‘¦ ā†’ ((2nd ā€˜š‘§) āˆˆ šµ ā†” š‘¦ āˆˆ šµ))
1513, 14imbitrid 243 . . . . . . . . . 10 ((2nd ā€˜š‘§) = š‘¦ ā†’ (š‘§ āˆˆ ({š‘„} Ɨ šµ) ā†’ š‘¦ āˆˆ šµ))
1615reximdv 3171 . . . . . . . . 9 ((2nd ā€˜š‘§) = š‘¦ ā†’ (āˆƒš‘„ āˆˆ š“ š‘§ āˆˆ ({š‘„} Ɨ šµ) ā†’ āˆƒš‘„ āˆˆ š“ š‘¦ āˆˆ šµ))
1712, 16biimtrid 241 . . . . . . . 8 ((2nd ā€˜š‘§) = š‘¦ ā†’ (š‘§ āˆˆ š‘‡ ā†’ āˆƒš‘„ āˆˆ š“ š‘¦ āˆˆ šµ))
1817impcom 409 . . . . . . 7 ((š‘§ āˆˆ š‘‡ āˆ§ (2nd ā€˜š‘§) = š‘¦) ā†’ āˆƒš‘„ āˆˆ š“ š‘¦ āˆˆ šµ)
1918rexlimiva 3148 . . . . . 6 (āˆƒš‘§ āˆˆ š‘‡ (2nd ā€˜š‘§) = š‘¦ ā†’ āˆƒš‘„ āˆˆ š“ š‘¦ āˆˆ šµ)
20 nfiu1 5032 . . . . . . . . 9 ā„²š‘„āˆŖ š‘„ āˆˆ š“ ({š‘„} Ɨ šµ)
219, 20nfcxfr 2902 . . . . . . . 8 ā„²š‘„š‘‡
22 nfv 1918 . . . . . . . 8 ā„²š‘„(2nd ā€˜š‘§) = š‘¦
2321, 22nfrexw 3311 . . . . . . 7 ā„²š‘„āˆƒš‘§ āˆˆ š‘‡ (2nd ā€˜š‘§) = š‘¦
24 ssiun2 5051 . . . . . . . . . . . 12 (š‘„ āˆˆ š“ ā†’ ({š‘„} Ɨ šµ) āŠ† āˆŖ š‘„ āˆˆ š“ ({š‘„} Ɨ šµ))
2524adantr 482 . . . . . . . . . . 11 ((š‘„ āˆˆ š“ āˆ§ š‘¦ āˆˆ šµ) ā†’ ({š‘„} Ɨ šµ) āŠ† āˆŖ š‘„ āˆˆ š“ ({š‘„} Ɨ šµ))
26 simpr 486 . . . . . . . . . . . 12 ((š‘„ āˆˆ š“ āˆ§ š‘¦ āˆˆ šµ) ā†’ š‘¦ āˆˆ šµ)
27 vsnid 4666 . . . . . . . . . . . . 13 š‘„ āˆˆ {š‘„}
28 opelxp 5713 . . . . . . . . . . . . 13 (āŸØš‘„, š‘¦āŸ© āˆˆ ({š‘„} Ɨ šµ) ā†” (š‘„ āˆˆ {š‘„} āˆ§ š‘¦ āˆˆ šµ))
2927, 28mpbiran 708 . . . . . . . . . . . 12 (āŸØš‘„, š‘¦āŸ© āˆˆ ({š‘„} Ɨ šµ) ā†” š‘¦ āˆˆ šµ)
3026, 29sylibr 233 . . . . . . . . . . 11 ((š‘„ āˆˆ š“ āˆ§ š‘¦ āˆˆ šµ) ā†’ āŸØš‘„, š‘¦āŸ© āˆˆ ({š‘„} Ɨ šµ))
3125, 30sseldd 3984 . . . . . . . . . 10 ((š‘„ āˆˆ š“ āˆ§ š‘¦ āˆˆ šµ) ā†’ āŸØš‘„, š‘¦āŸ© āˆˆ āˆŖ š‘„ āˆˆ š“ ({š‘„} Ɨ šµ))
3231, 9eleqtrrdi 2845 . . . . . . . . 9 ((š‘„ āˆˆ š“ āˆ§ š‘¦ āˆˆ šµ) ā†’ āŸØš‘„, š‘¦āŸ© āˆˆ š‘‡)
33 vex 3479 . . . . . . . . . 10 š‘„ āˆˆ V
34 vex 3479 . . . . . . . . . 10 š‘¦ āˆˆ V
3533, 34op2nd 7984 . . . . . . . . 9 (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦
36 fveqeq2 6901 . . . . . . . . . 10 (š‘§ = āŸØš‘„, š‘¦āŸ© ā†’ ((2nd ā€˜š‘§) = š‘¦ ā†” (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦))
3736rspcev 3613 . . . . . . . . 9 ((āŸØš‘„, š‘¦āŸ© āˆˆ š‘‡ āˆ§ (2nd ā€˜āŸØš‘„, š‘¦āŸ©) = š‘¦) ā†’ āˆƒš‘§ āˆˆ š‘‡ (2nd ā€˜š‘§) = š‘¦)
3832, 35, 37sylancl 587 . . . . . . . 8 ((š‘„ āˆˆ š“ āˆ§ š‘¦ āˆˆ šµ) ā†’ āˆƒš‘§ āˆˆ š‘‡ (2nd ā€˜š‘§) = š‘¦)
3938ex 414 . . . . . . 7 (š‘„ āˆˆ š“ ā†’ (š‘¦ āˆˆ šµ ā†’ āˆƒš‘§ āˆˆ š‘‡ (2nd ā€˜š‘§) = š‘¦))
4023, 39rexlimi 3257 . . . . . 6 (āˆƒš‘„ āˆˆ š“ š‘¦ āˆˆ šµ ā†’ āˆƒš‘§ āˆˆ š‘‡ (2nd ā€˜š‘§) = š‘¦)
4119, 40impbii 208 . . . . 5 (āˆƒš‘§ āˆˆ š‘‡ (2nd ā€˜š‘§) = š‘¦ ā†” āˆƒš‘„ āˆˆ š“ š‘¦ āˆˆ šµ)
42 fvelimab 6965 . . . . . 6 ((2nd Fn V āˆ§ š‘‡ āŠ† V) ā†’ (š‘¦ āˆˆ (2nd ā€œ š‘‡) ā†” āˆƒš‘§ āˆˆ š‘‡ (2nd ā€˜š‘§) = š‘¦))
434, 5, 42mp2an 691 . . . . 5 (š‘¦ āˆˆ (2nd ā€œ š‘‡) ā†” āˆƒš‘§ āˆˆ š‘‡ (2nd ā€˜š‘§) = š‘¦)
44 eliun 5002 . . . . 5 (š‘¦ āˆˆ āˆŖ š‘„ āˆˆ š“ šµ ā†” āˆƒš‘„ āˆˆ š“ š‘¦ āˆˆ šµ)
4541, 43, 443bitr4i 303 . . . 4 (š‘¦ āˆˆ (2nd ā€œ š‘‡) ā†” š‘¦ āˆˆ āˆŖ š‘„ āˆˆ š“ šµ)
4645eqriv 2730 . . 3 (2nd ā€œ š‘‡) = āˆŖ š‘„ āˆˆ š“ šµ
478, 46eqtr3i 2763 . 2 ran (2nd ā†¾ š‘‡) = āˆŖ š‘„ āˆˆ š“ šµ
48 df-fo 6550 . 2 ((2nd ā†¾ š‘‡):š‘‡ā€“ontoā†’āˆŖ š‘„ āˆˆ š“ šµ ā†” ((2nd ā†¾ š‘‡) Fn š‘‡ āˆ§ ran (2nd ā†¾ š‘‡) = āˆŖ š‘„ āˆˆ š“ šµ))
497, 47, 48mpbir2an 710 1 (2nd ā†¾ š‘‡):š‘‡ā€“ontoā†’āˆŖ š‘„ āˆˆ š“ šµ
Colors of variables: wff setvar class
Syntax hints:   ā†” wb 205   āˆ§ wa 397   = wceq 1542   āˆˆ wcel 2107  āˆƒwrex 3071  Vcvv 3475   āŠ† wss 3949  {csn 4629  āŸØcop 4635  āˆŖ ciun 4998   Ɨ cxp 5675  ran crn 5678   ā†¾ cres 5679   ā€œ cima 5680   Fn wfn 6539  āŸ¶wf 6540  ā€“ontoā†’wfo 6542  ā€˜cfv 6544  2nd c2nd 7974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552  df-2nd 7976
This theorem is referenced by:  iundomg  10536  2ndresdjuf1o  31875
  Copyright terms: Public domain W3C validator