Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrunb3rnmpt Structured version   Visualization version   GIF version

Theorem infxrunb3rnmpt 41695
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infxrunb3rnmpt.1 𝑥𝜑
infxrunb3rnmpt.2 𝑦𝜑
infxrunb3rnmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
infxrunb3rnmpt (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem infxrunb3rnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infxrunb3rnmpt.2 . . 3 𝑦𝜑
2 infxrunb3rnmpt.1 . . . . 5 𝑥𝜑
3 nfmpt1 5156 . . . . . . 7 𝑥(𝑥𝐴𝐵)
43nfrn 5818 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
5 nfv 1911 . . . . . 6 𝑥 𝑧𝑦
64, 5nfrex 3309 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
7 simpr 487 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
8 infxrunb3rnmpt.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
9 eqid 2821 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
109elrnmpt1 5824 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
117, 8, 10syl2anc 586 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
12113adant3 1128 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵 ∈ ran (𝑥𝐴𝐵))
13 simp3 1134 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵𝑦)
14 breq1 5061 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
1514rspcev 3622 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ 𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
1612, 13, 15syl2anc 586 . . . . . 6 ((𝜑𝑥𝐴𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
17163exp 1115 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)))
182, 6, 17rexlimd 3317 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
19 nfv 1911 . . . . . 6 𝑧𝑥𝐴 𝐵𝑦
20 vex 3497 . . . . . . . . 9 𝑧 ∈ V
219elrnmpt 5822 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2220, 21ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
2322biimpi 218 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
2414biimpcd 251 . . . . . . . . . 10 (𝑧𝑦 → (𝑧 = 𝐵𝐵𝑦))
2524a1d 25 . . . . . . . . 9 (𝑧𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝐵𝑦)))
265, 25reximdai 3311 . . . . . . . 8 (𝑧𝑦 → (∃𝑥𝐴 𝑧 = 𝐵 → ∃𝑥𝐴 𝐵𝑦))
2726com12 32 . . . . . . 7 (∃𝑥𝐴 𝑧 = 𝐵 → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2823, 27syl 17 . . . . . 6 (𝑧 ∈ ran (𝑥𝐴𝐵) → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2919, 28rexlimi 3315 . . . . 5 (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦)
3029a1i 11 . . . 4 (𝜑 → (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
3118, 30impbid 214 . . 3 (𝜑 → (∃𝑥𝐴 𝐵𝑦 ↔ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
321, 31ralbid 3231 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
332, 9, 8rnmptssd 41451 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
34 infxrunb3 41691 . . 3 (ran (𝑥𝐴𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3533, 34syl 17 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3632, 35bitrd 281 1 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wnf 1780  wcel 2110  wral 3138  wrex 3139  Vcvv 3494  wss 3935   class class class wbr 5058  cmpt 5138  ran crn 5550  infcinf 8899  cr 10530  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867
This theorem is referenced by:  limsupmnflem  41994
  Copyright terms: Public domain W3C validator