| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrunb3rnmpt | Structured version Visualization version GIF version | ||
| Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| infxrunb3rnmpt.1 | ⊢ Ⅎ𝑥𝜑 |
| infxrunb3rnmpt.2 | ⊢ Ⅎ𝑦𝜑 |
| infxrunb3rnmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| infxrunb3rnmpt | ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxrunb3rnmpt.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | infxrunb3rnmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfmpt1 5201 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | nfrn 5905 | . . . . . 6 ⊢ Ⅎ𝑥ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
| 6 | 4, 5 | nfrexw 3284 | . . . . 5 ⊢ Ⅎ𝑥∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 |
| 7 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 8 | infxrunb3rnmpt.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 9 | eqid 2729 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 10 | 9 | elrnmpt1 5913 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 11 | 7, 8, 10 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 12 | 11 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 13 | simp3 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ≤ 𝑦) | |
| 14 | breq1 5105 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) | |
| 15 | 14 | rspcev 3585 | . . . . . . 7 ⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 16 | 12, 13, 15 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 17 | 16 | 3exp 1119 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦))) |
| 18 | 2, 6, 17 | rexlimd 3242 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
| 19 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
| 20 | vex 3448 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
| 21 | 9 | elrnmpt 5911 | . . . . . . . . 9 ⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
| 22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
| 23 | 22 | biimpi 216 | . . . . . . 7 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
| 24 | 14 | biimpcd 249 | . . . . . . . . . 10 ⊢ (𝑧 ≤ 𝑦 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦)) |
| 25 | 24 | a1d 25 | . . . . . . . . 9 ⊢ (𝑧 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦))) |
| 26 | 5, 25 | reximdai 3237 | . . . . . . . 8 ⊢ (𝑧 ≤ 𝑦 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
| 27 | 26 | com12 32 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
| 28 | 23, 27 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
| 29 | 19, 28 | rexlimi 3235 | . . . . 5 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
| 31 | 18, 30 | impbid 212 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
| 32 | 1, 31 | ralbid 3248 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
| 33 | 2, 9, 8 | rnmptssd 45183 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ*) |
| 34 | infxrunb3 45413 | . . 3 ⊢ (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) | |
| 35 | 33, 34 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
| 36 | 32, 35 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 ↦ cmpt 5183 ran crn 5632 infcinf 9368 ℝcr 11043 -∞cmnf 11182 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: limsupmnflem 45711 |
| Copyright terms: Public domain | W3C validator |