Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrunb3rnmpt Structured version   Visualization version   GIF version

Theorem infxrunb3rnmpt 45378
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infxrunb3rnmpt.1 𝑥𝜑
infxrunb3rnmpt.2 𝑦𝜑
infxrunb3rnmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
infxrunb3rnmpt (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem infxrunb3rnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infxrunb3rnmpt.2 . . 3 𝑦𝜑
2 infxrunb3rnmpt.1 . . . . 5 𝑥𝜑
3 nfmpt1 5256 . . . . . . 7 𝑥(𝑥𝐴𝐵)
43nfrn 5966 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
5 nfv 1912 . . . . . 6 𝑥 𝑧𝑦
64, 5nfrexw 3311 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
7 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
8 infxrunb3rnmpt.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
9 eqid 2735 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
109elrnmpt1 5974 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
117, 8, 10syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
12113adant3 1131 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵 ∈ ran (𝑥𝐴𝐵))
13 simp3 1137 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵𝑦)
14 breq1 5151 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
1514rspcev 3622 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ 𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
1612, 13, 15syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
17163exp 1118 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)))
182, 6, 17rexlimd 3264 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
19 nfv 1912 . . . . . 6 𝑧𝑥𝐴 𝐵𝑦
20 vex 3482 . . . . . . . . 9 𝑧 ∈ V
219elrnmpt 5972 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2220, 21ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
2322biimpi 216 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
2414biimpcd 249 . . . . . . . . . 10 (𝑧𝑦 → (𝑧 = 𝐵𝐵𝑦))
2524a1d 25 . . . . . . . . 9 (𝑧𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝐵𝑦)))
265, 25reximdai 3259 . . . . . . . 8 (𝑧𝑦 → (∃𝑥𝐴 𝑧 = 𝐵 → ∃𝑥𝐴 𝐵𝑦))
2726com12 32 . . . . . . 7 (∃𝑥𝐴 𝑧 = 𝐵 → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2823, 27syl 17 . . . . . 6 (𝑧 ∈ ran (𝑥𝐴𝐵) → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2919, 28rexlimi 3257 . . . . 5 (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦)
3029a1i 11 . . . 4 (𝜑 → (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
3118, 30impbid 212 . . 3 (𝜑 → (∃𝑥𝐴 𝐵𝑦 ↔ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
321, 31ralbid 3271 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
332, 9, 8rnmptssd 45139 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
34 infxrunb3 45374 . . 3 (ran (𝑥𝐴𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3533, 34syl 17 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3632, 35bitrd 279 1 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wnf 1780  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  wss 3963   class class class wbr 5148  cmpt 5231  ran crn 5690  infcinf 9479  cr 11152  -∞cmnf 11291  *cxr 11292   < clt 11293  cle 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493
This theorem is referenced by:  limsupmnflem  45676
  Copyright terms: Public domain W3C validator