![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrunb3rnmpt | Structured version Visualization version GIF version |
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
infxrunb3rnmpt.1 | ⊢ Ⅎ𝑥𝜑 |
infxrunb3rnmpt.2 | ⊢ Ⅎ𝑦𝜑 |
infxrunb3rnmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
infxrunb3rnmpt | ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrunb3rnmpt.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | infxrunb3rnmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | nfmpt1 5257 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | nfrn 5952 | . . . . . 6 ⊢ Ⅎ𝑥ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
6 | 4, 5 | nfrexw 3311 | . . . . 5 ⊢ Ⅎ𝑥∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 |
7 | simpr 486 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
8 | infxrunb3rnmpt.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
9 | eqid 2733 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
10 | 9 | elrnmpt1 5958 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
11 | 7, 8, 10 | syl2anc 585 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
12 | 11 | 3adant3 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
13 | simp3 1139 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ≤ 𝑦) | |
14 | breq1 5152 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) | |
15 | 14 | rspcev 3613 | . . . . . . 7 ⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
16 | 12, 13, 15 | syl2anc 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
17 | 16 | 3exp 1120 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦))) |
18 | 2, 6, 17 | rexlimd 3264 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
19 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
20 | vex 3479 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
21 | 9 | elrnmpt 5956 | . . . . . . . . 9 ⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
23 | 22 | biimpi 215 | . . . . . . 7 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
24 | 14 | biimpcd 248 | . . . . . . . . . 10 ⊢ (𝑧 ≤ 𝑦 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦)) |
25 | 24 | a1d 25 | . . . . . . . . 9 ⊢ (𝑧 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦))) |
26 | 5, 25 | reximdai 3259 | . . . . . . . 8 ⊢ (𝑧 ≤ 𝑦 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
27 | 26 | com12 32 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
28 | 23, 27 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
29 | 19, 28 | rexlimi 3257 | . . . . 5 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
31 | 18, 30 | impbid 211 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
32 | 1, 31 | ralbid 3271 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
33 | 2, 9, 8 | rnmptssd 43895 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ*) |
34 | infxrunb3 44134 | . . 3 ⊢ (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) | |
35 | 33, 34 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
36 | 32, 35 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 Vcvv 3475 ⊆ wss 3949 class class class wbr 5149 ↦ cmpt 5232 ran crn 5678 infcinf 9436 ℝcr 11109 -∞cmnf 11246 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 |
This theorem is referenced by: limsupmnflem 44436 |
Copyright terms: Public domain | W3C validator |