| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrunb3rnmpt | Structured version Visualization version GIF version | ||
| Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| infxrunb3rnmpt.1 | ⊢ Ⅎ𝑥𝜑 |
| infxrunb3rnmpt.2 | ⊢ Ⅎ𝑦𝜑 |
| infxrunb3rnmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| infxrunb3rnmpt | ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxrunb3rnmpt.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | infxrunb3rnmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfmpt1 5188 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | nfrn 5891 | . . . . . 6 ⊢ Ⅎ𝑥ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 5 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
| 6 | 4, 5 | nfrexw 3280 | . . . . 5 ⊢ Ⅎ𝑥∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 |
| 7 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 8 | infxrunb3rnmpt.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
| 9 | eqid 2731 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 10 | 9 | elrnmpt1 5899 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 11 | 7, 8, 10 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 12 | 11 | 3adant3 1132 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 13 | simp3 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ≤ 𝑦) | |
| 14 | breq1 5092 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) | |
| 15 | 14 | rspcev 3572 | . . . . . . 7 ⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 16 | 12, 13, 15 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
| 17 | 16 | 3exp 1119 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦))) |
| 18 | 2, 6, 17 | rexlimd 3239 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
| 19 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
| 20 | vex 3440 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
| 21 | 9 | elrnmpt 5897 | . . . . . . . . 9 ⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
| 22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
| 23 | 22 | biimpi 216 | . . . . . . 7 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
| 24 | 14 | biimpcd 249 | . . . . . . . . . 10 ⊢ (𝑧 ≤ 𝑦 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦)) |
| 25 | 24 | a1d 25 | . . . . . . . . 9 ⊢ (𝑧 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦))) |
| 26 | 5, 25 | reximdai 3234 | . . . . . . . 8 ⊢ (𝑧 ≤ 𝑦 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
| 27 | 26 | com12 32 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
| 28 | 23, 27 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
| 29 | 19, 28 | rexlimi 3232 | . . . . 5 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
| 31 | 18, 30 | impbid 212 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
| 32 | 1, 31 | ralbid 3245 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
| 33 | 2, 9, 8 | rnmptssd 45303 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ*) |
| 34 | infxrunb3 45532 | . . 3 ⊢ (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) | |
| 35 | 33, 34 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
| 36 | 32, 35 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 infcinf 9325 ℝcr 11005 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: limsupmnflem 45828 |
| Copyright terms: Public domain | W3C validator |