Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrunb3rnmpt Structured version   Visualization version   GIF version

Theorem infxrunb3rnmpt 45417
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infxrunb3rnmpt.1 𝑥𝜑
infxrunb3rnmpt.2 𝑦𝜑
infxrunb3rnmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
infxrunb3rnmpt (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem infxrunb3rnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infxrunb3rnmpt.2 . . 3 𝑦𝜑
2 infxrunb3rnmpt.1 . . . . 5 𝑥𝜑
3 nfmpt1 5191 . . . . . . 7 𝑥(𝑥𝐴𝐵)
43nfrn 5894 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
5 nfv 1914 . . . . . 6 𝑥 𝑧𝑦
64, 5nfrexw 3277 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
7 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
8 infxrunb3rnmpt.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
9 eqid 2729 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
109elrnmpt1 5902 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
117, 8, 10syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
12113adant3 1132 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵 ∈ ran (𝑥𝐴𝐵))
13 simp3 1138 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵𝑦)
14 breq1 5095 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
1514rspcev 3577 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ 𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
1612, 13, 15syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
17163exp 1119 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)))
182, 6, 17rexlimd 3236 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
19 nfv 1914 . . . . . 6 𝑧𝑥𝐴 𝐵𝑦
20 vex 3440 . . . . . . . . 9 𝑧 ∈ V
219elrnmpt 5900 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2220, 21ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
2322biimpi 216 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
2414biimpcd 249 . . . . . . . . . 10 (𝑧𝑦 → (𝑧 = 𝐵𝐵𝑦))
2524a1d 25 . . . . . . . . 9 (𝑧𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝐵𝑦)))
265, 25reximdai 3231 . . . . . . . 8 (𝑧𝑦 → (∃𝑥𝐴 𝑧 = 𝐵 → ∃𝑥𝐴 𝐵𝑦))
2726com12 32 . . . . . . 7 (∃𝑥𝐴 𝑧 = 𝐵 → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2823, 27syl 17 . . . . . 6 (𝑧 ∈ ran (𝑥𝐴𝐵) → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2919, 28rexlimi 3229 . . . . 5 (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦)
3029a1i 11 . . . 4 (𝜑 → (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
3118, 30impbid 212 . . 3 (𝜑 → (∃𝑥𝐴 𝐵𝑦 ↔ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
321, 31ralbid 3242 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
332, 9, 8rnmptssd 45184 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
34 infxrunb3 45413 . . 3 (ran (𝑥𝐴𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3533, 34syl 17 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3632, 35bitrd 279 1 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903   class class class wbr 5092  cmpt 5173  ran crn 5620  infcinf 9331  cr 11008  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350
This theorem is referenced by:  limsupmnflem  45711
  Copyright terms: Public domain W3C validator