Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrunb3rnmpt Structured version   Visualization version   GIF version

Theorem infxrunb3rnmpt 44872
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infxrunb3rnmpt.1 𝑥𝜑
infxrunb3rnmpt.2 𝑦𝜑
infxrunb3rnmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
infxrunb3rnmpt (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem infxrunb3rnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infxrunb3rnmpt.2 . . 3 𝑦𝜑
2 infxrunb3rnmpt.1 . . . . 5 𝑥𝜑
3 nfmpt1 5251 . . . . . . 7 𝑥(𝑥𝐴𝐵)
43nfrn 5948 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
5 nfv 1909 . . . . . 6 𝑥 𝑧𝑦
64, 5nfrexw 3301 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
7 simpr 483 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
8 infxrunb3rnmpt.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
9 eqid 2725 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
109elrnmpt1 5954 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
117, 8, 10syl2anc 582 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
12113adant3 1129 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵 ∈ ran (𝑥𝐴𝐵))
13 simp3 1135 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵𝑦)
14 breq1 5146 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
1514rspcev 3602 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ 𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
1612, 13, 15syl2anc 582 . . . . . 6 ((𝜑𝑥𝐴𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
17163exp 1116 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)))
182, 6, 17rexlimd 3254 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
19 nfv 1909 . . . . . 6 𝑧𝑥𝐴 𝐵𝑦
20 vex 3467 . . . . . . . . 9 𝑧 ∈ V
219elrnmpt 5952 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2220, 21ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
2322biimpi 215 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
2414biimpcd 248 . . . . . . . . . 10 (𝑧𝑦 → (𝑧 = 𝐵𝐵𝑦))
2524a1d 25 . . . . . . . . 9 (𝑧𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝐵𝑦)))
265, 25reximdai 3249 . . . . . . . 8 (𝑧𝑦 → (∃𝑥𝐴 𝑧 = 𝐵 → ∃𝑥𝐴 𝐵𝑦))
2726com12 32 . . . . . . 7 (∃𝑥𝐴 𝑧 = 𝐵 → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2823, 27syl 17 . . . . . 6 (𝑧 ∈ ran (𝑥𝐴𝐵) → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2919, 28rexlimi 3247 . . . . 5 (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦)
3029a1i 11 . . . 4 (𝜑 → (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
3118, 30impbid 211 . . 3 (𝜑 → (∃𝑥𝐴 𝐵𝑦 ↔ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
321, 31ralbid 3261 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
332, 9, 8rnmptssd 44632 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
34 infxrunb3 44868 . . 3 (ran (𝑥𝐴𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3533, 34syl 17 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3632, 35bitrd 278 1 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wnf 1777  wcel 2098  wral 3051  wrex 3060  Vcvv 3463  wss 3940   class class class wbr 5143  cmpt 5226  ran crn 5673  infcinf 9462  cr 11135  -∞cmnf 11274  *cxr 11275   < clt 11276  cle 11277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475
This theorem is referenced by:  limsupmnflem  45170
  Copyright terms: Public domain W3C validator