![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrunb3rnmpt | Structured version Visualization version GIF version |
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
infxrunb3rnmpt.1 | ⊢ Ⅎ𝑥𝜑 |
infxrunb3rnmpt.2 | ⊢ Ⅎ𝑦𝜑 |
infxrunb3rnmpt.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
infxrunb3rnmpt | ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrunb3rnmpt.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | infxrunb3rnmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | nfmpt1 5250 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | nfrn 5948 | . . . . . 6 ⊢ Ⅎ𝑥ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | nfv 1910 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ≤ 𝑦 | |
6 | 4, 5 | nfrexw 3305 | . . . . 5 ⊢ Ⅎ𝑥∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 |
7 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
8 | infxrunb3rnmpt.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | |
9 | eqid 2727 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
10 | 9 | elrnmpt1 5954 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
11 | 7, 8, 10 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
12 | 11 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
13 | simp3 1136 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → 𝐵 ≤ 𝑦) | |
14 | breq1 5145 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦)) | |
15 | 14 | rspcev 3607 | . . . . . . 7 ⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
16 | 12, 13, 15 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑦) → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
17 | 16 | 3exp 1117 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦))) |
18 | 2, 6, 17 | rexlimd 3258 | . . . 4 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
19 | nfv 1910 | . . . . . 6 ⊢ Ⅎ𝑧∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | |
20 | vex 3473 | . . . . . . . . 9 ⊢ 𝑧 ∈ V | |
21 | 9 | elrnmpt 5952 | . . . . . . . . 9 ⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
22 | 20, 21 | ax-mp 5 | . . . . . . . 8 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
23 | 22 | biimpi 215 | . . . . . . 7 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
24 | 14 | biimpcd 248 | . . . . . . . . . 10 ⊢ (𝑧 ≤ 𝑦 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦)) |
25 | 24 | a1d 25 | . . . . . . . . 9 ⊢ (𝑧 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝐵 ≤ 𝑦))) |
26 | 5, 25 | reximdai 3253 | . . . . . . . 8 ⊢ (𝑧 ≤ 𝑦 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
27 | 26 | com12 32 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
28 | 23, 27 | syl 17 | . . . . . 6 ⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
29 | 19, 28 | rexlimi 3251 | . . . . 5 ⊢ (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → (∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 → ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦)) |
31 | 18, 30 | impbid 211 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
32 | 1, 31 | ralbid 3265 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦)) |
33 | 2, 9, 8 | rnmptssd 44482 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ*) |
34 | infxrunb3 44719 | . . 3 ⊢ (ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) | |
35 | 33, 34 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
36 | 32, 35 | bitrd 279 | 1 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ↔ inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = -∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 Vcvv 3469 ⊆ wss 3944 class class class wbr 5142 ↦ cmpt 5225 ran crn 5673 infcinf 9450 ℝcr 11123 -∞cmnf 11262 ℝ*cxr 11263 < clt 11264 ≤ cle 11265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 |
This theorem is referenced by: limsupmnflem 45021 |
Copyright terms: Public domain | W3C validator |