Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrunb3rnmpt Structured version   Visualization version   GIF version

Theorem infxrunb3rnmpt 44138
Description: The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infxrunb3rnmpt.1 𝑥𝜑
infxrunb3rnmpt.2 𝑦𝜑
infxrunb3rnmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
infxrunb3rnmpt (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem infxrunb3rnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 infxrunb3rnmpt.2 . . 3 𝑦𝜑
2 infxrunb3rnmpt.1 . . . . 5 𝑥𝜑
3 nfmpt1 5257 . . . . . . 7 𝑥(𝑥𝐴𝐵)
43nfrn 5952 . . . . . 6 𝑥ran (𝑥𝐴𝐵)
5 nfv 1918 . . . . . 6 𝑥 𝑧𝑦
64, 5nfrexw 3311 . . . . 5 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦
7 simpr 486 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
8 infxrunb3rnmpt.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
9 eqid 2733 . . . . . . . . . 10 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
109elrnmpt1 5958 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ*) → 𝐵 ∈ ran (𝑥𝐴𝐵))
117, 8, 10syl2anc 585 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
12113adant3 1133 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵 ∈ ran (𝑥𝐴𝐵))
13 simp3 1139 . . . . . . 7 ((𝜑𝑥𝐴𝐵𝑦) → 𝐵𝑦)
14 breq1 5152 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑦𝐵𝑦))
1514rspcev 3613 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ 𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
1612, 13, 15syl2anc 585 . . . . . 6 ((𝜑𝑥𝐴𝐵𝑦) → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
17163exp 1120 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)))
182, 6, 17rexlimd 3264 . . . 4 (𝜑 → (∃𝑥𝐴 𝐵𝑦 → ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
19 nfv 1918 . . . . . 6 𝑧𝑥𝐴 𝐵𝑦
20 vex 3479 . . . . . . . . 9 𝑧 ∈ V
219elrnmpt 5956 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2220, 21ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
2322biimpi 215 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
2414biimpcd 248 . . . . . . . . . 10 (𝑧𝑦 → (𝑧 = 𝐵𝐵𝑦))
2524a1d 25 . . . . . . . . 9 (𝑧𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝐵𝑦)))
265, 25reximdai 3259 . . . . . . . 8 (𝑧𝑦 → (∃𝑥𝐴 𝑧 = 𝐵 → ∃𝑥𝐴 𝐵𝑦))
2726com12 32 . . . . . . 7 (∃𝑥𝐴 𝑧 = 𝐵 → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2823, 27syl 17 . . . . . 6 (𝑧 ∈ ran (𝑥𝐴𝐵) → (𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
2919, 28rexlimi 3257 . . . . 5 (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦)
3029a1i 11 . . . 4 (𝜑 → (∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 → ∃𝑥𝐴 𝐵𝑦))
3118, 30impbid 211 . . 3 (𝜑 → (∃𝑥𝐴 𝐵𝑦 ↔ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
321, 31ralbid 3271 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦))
332, 9, 8rnmptssd 43895 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
34 infxrunb3 44134 . . 3 (ran (𝑥𝐴𝐵) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3533, 34syl 17 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
3632, 35bitrd 279 1 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑥𝐴 𝐵𝑦 ↔ inf(ran (𝑥𝐴𝐵), ℝ*, < ) = -∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wnf 1786  wcel 2107  wral 3062  wrex 3071  Vcvv 3475  wss 3949   class class class wbr 5149  cmpt 5232  ran crn 5678  infcinf 9436  cr 11109  -∞cmnf 11246  *cxr 11247   < clt 11248  cle 11249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447
This theorem is referenced by:  limsupmnflem  44436
  Copyright terms: Public domain W3C validator