Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngmmgm Structured version   Visualization version   GIF version

Theorem 2zrngmmgm 48262
Description: R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngmmgm 𝑀 ∈ Mgm
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngmmgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2734 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3154 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3648 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2734 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3154 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3648 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 zmulcl 12513 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
98ad2ant2r 747 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ ℤ)
10 nfv 1915 . . . . . . . . 9 𝑥 𝑎 ∈ ℤ
11 nfv 1915 . . . . . . . . . . 11 𝑥 𝑏 ∈ ℤ
12 nfre1 3255 . . . . . . . . . . 11 𝑥𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)
1311, 12nfan 1900 . . . . . . . . . 10 𝑥(𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))
14 nfv 1915 . . . . . . . . . 10 𝑥𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)
1513, 14nfim 1897 . . . . . . . . 9 𝑥((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
1610, 15nfim 1897 . . . . . . . 8 𝑥(𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
17 simpll 766 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) → 𝑥 ∈ ℤ)
18 simpl 482 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℤ)
19 zmulcl 12513 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑥 · 𝑏) ∈ ℤ)
2017, 18, 19syl2an 596 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑥 · 𝑏) ∈ ℤ)
21 oveq2 7349 . . . . . . . . . . . 12 (𝑦 = (𝑥 · 𝑏) → (2 · 𝑦) = (2 · (𝑥 · 𝑏)))
2221eqeq2d 2741 . . . . . . . . . . 11 (𝑦 = (𝑥 · 𝑏) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
2322adantl 481 . . . . . . . . . 10 (((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) ∧ 𝑦 = (𝑥 · 𝑏)) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
24 oveq1 7348 . . . . . . . . . . . 12 (𝑎 = (2 · 𝑥) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
2524ad3antlr 731 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
26 2cnd 12195 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 2 ∈ ℂ)
27 zcn 12465 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2827ad3antrrr 730 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑥 ∈ ℂ)
29 zcn 12465 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3029adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
3130adantl 481 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑏 ∈ ℂ)
3226, 28, 31mulassd 11127 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ((2 · 𝑥) · 𝑏) = (2 · (𝑥 · 𝑏)))
3325, 32eqtrd 2765 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏)))
3420, 23, 33rspcedvd 3577 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
3534exp41 434 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))))
3616, 35rexlimi 3230 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))))
3736impcom 407 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
3837imp 406 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
39 eqeq1 2734 . . . . . . . 8 (𝑧 = (𝑎 · 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑥)))
4039rexbidv 3154 . . . . . . 7 (𝑧 = (𝑎 · 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
4140, 3elrab2 3648 . . . . . 6 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
42 oveq2 7349 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
4342eqeq2d 2741 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑎 · 𝑏) = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑦)))
4443cbvrexvw 3209 . . . . . . 7 (∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
4544anbi2i 623 . . . . . 6 (((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)) ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
4641, 45bitri 275 . . . . 5 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
479, 38, 46sylanbrc 583 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ 𝐸)
484, 7, 47syl2anb 598 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 · 𝑏) ∈ 𝐸)
4948rgen2 3170 . 2 𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸
5030even 48247 . . 3 0 ∈ 𝐸
51 2zrngmmgm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
52 2zrngbas.r . . . . . 6 𝑅 = (ℂflds 𝐸)
533, 522zrngbas 48252 . . . . 5 𝐸 = (Base‘𝑅)
5451, 53mgpbas 20056 . . . 4 𝐸 = (Base‘𝑀)
553, 522zrngmul 48261 . . . . 5 · = (.r𝑅)
5651, 55mgpplusg 20055 . . . 4 · = (+g𝑀)
5754, 56ismgmn0 18542 . . 3 (0 ∈ 𝐸 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸))
5850, 57ax-mp 5 . 2 (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸)
5949, 58mpbir 231 1 𝑀 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  {crab 3393  cfv 6477  (class class class)co 7341  cc 10996  0cc0 10998   · cmul 11003  2c2 12172  cz 12460  s cress 17133  Mgmcmgm 18538  mulGrpcmgp 20051  fldccnfld 21284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-mgm 18540  df-mgp 20052  df-cnfld 21285
This theorem is referenced by:  2zrngmsgrp  48263
  Copyright terms: Public domain W3C validator