Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngmmgm Structured version   Visualization version   GIF version

Theorem 2zrngmmgm 45504
Description: R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngmmgm 𝑀 ∈ Mgm
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngmmgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3226 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3627 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2742 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3226 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3627 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 zmulcl 12369 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
98ad2ant2r 744 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ ℤ)
10 nfv 1917 . . . . . . . . 9 𝑥 𝑎 ∈ ℤ
11 nfv 1917 . . . . . . . . . . 11 𝑥 𝑏 ∈ ℤ
12 nfre1 3239 . . . . . . . . . . 11 𝑥𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)
1311, 12nfan 1902 . . . . . . . . . 10 𝑥(𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))
14 nfv 1917 . . . . . . . . . 10 𝑥𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)
1513, 14nfim 1899 . . . . . . . . 9 𝑥((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
1610, 15nfim 1899 . . . . . . . 8 𝑥(𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
17 simpll 764 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) → 𝑥 ∈ ℤ)
18 simpl 483 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℤ)
19 zmulcl 12369 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑥 · 𝑏) ∈ ℤ)
2017, 18, 19syl2an 596 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑥 · 𝑏) ∈ ℤ)
21 oveq2 7283 . . . . . . . . . . . 12 (𝑦 = (𝑥 · 𝑏) → (2 · 𝑦) = (2 · (𝑥 · 𝑏)))
2221eqeq2d 2749 . . . . . . . . . . 11 (𝑦 = (𝑥 · 𝑏) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
2322adantl 482 . . . . . . . . . 10 (((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) ∧ 𝑦 = (𝑥 · 𝑏)) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
24 oveq1 7282 . . . . . . . . . . . 12 (𝑎 = (2 · 𝑥) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
2524ad3antlr 728 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
26 2cnd 12051 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 2 ∈ ℂ)
27 zcn 12324 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2827ad3antrrr 727 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑥 ∈ ℂ)
29 zcn 12324 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3029adantr 481 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
3130adantl 482 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑏 ∈ ℂ)
3226, 28, 31mulassd 10998 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ((2 · 𝑥) · 𝑏) = (2 · (𝑥 · 𝑏)))
3325, 32eqtrd 2778 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏)))
3420, 23, 33rspcedvd 3563 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
3534exp41 435 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))))
3616, 35rexlimi 3248 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))))
3736impcom 408 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
3837imp 407 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
39 eqeq1 2742 . . . . . . . 8 (𝑧 = (𝑎 · 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑥)))
4039rexbidv 3226 . . . . . . 7 (𝑧 = (𝑎 · 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
4140, 3elrab2 3627 . . . . . 6 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
42 oveq2 7283 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
4342eqeq2d 2749 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑎 · 𝑏) = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑦)))
4443cbvrexvw 3384 . . . . . . 7 (∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
4544anbi2i 623 . . . . . 6 (((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)) ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
4641, 45bitri 274 . . . . 5 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
479, 38, 46sylanbrc 583 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ 𝐸)
484, 7, 47syl2anb 598 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 · 𝑏) ∈ 𝐸)
4948rgen2 3120 . 2 𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸
5030even 45489 . . 3 0 ∈ 𝐸
51 2zrngmmgm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
52 2zrngbas.r . . . . . 6 𝑅 = (ℂflds 𝐸)
533, 522zrngbas 45494 . . . . 5 𝐸 = (Base‘𝑅)
5451, 53mgpbas 19726 . . . 4 𝐸 = (Base‘𝑀)
553, 522zrngmul 45503 . . . . 5 · = (.r𝑅)
5651, 55mgpplusg 19724 . . . 4 · = (+g𝑀)
5754, 56ismgmn0 18328 . . 3 (0 ∈ 𝐸 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸))
5850, 57ax-mp 5 . 2 (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸)
5949, 58mpbir 230 1 𝑀 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871   · cmul 10876  2c2 12028  cz 12319  s cress 16941  Mgmcmgm 18324  mulGrpcmgp 19720  fldccnfld 20597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-mgm 18326  df-mgp 19721  df-cnfld 20598
This theorem is referenced by:  2zrngmsgrp  45505
  Copyright terms: Public domain W3C validator