Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngmmgm Structured version   Visualization version   GIF version

Theorem 2zrngmmgm 47975
Description: R is a (multiplicative) magma. (Contributed by AV, 11-Feb-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngmmgm 𝑀 ∈ Mgm
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngmmgm
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2744 . . . . . 6 (𝑧 = 𝑎 → (𝑧 = (2 · 𝑥) ↔ 𝑎 = (2 · 𝑥)))
21rexbidv 3185 . . . . 5 (𝑧 = 𝑎 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
3 2zrng.e . . . . 5 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
42, 3elrab2 3711 . . . 4 (𝑎𝐸 ↔ (𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)))
5 eqeq1 2744 . . . . . 6 (𝑧 = 𝑏 → (𝑧 = (2 · 𝑥) ↔ 𝑏 = (2 · 𝑥)))
65rexbidv 3185 . . . . 5 (𝑧 = 𝑏 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
76, 3elrab2 3711 . . . 4 (𝑏𝐸 ↔ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)))
8 zmulcl 12692 . . . . . 6 ((𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑎 · 𝑏) ∈ ℤ)
98ad2ant2r 746 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ ℤ)
10 nfv 1913 . . . . . . . . 9 𝑥 𝑎 ∈ ℤ
11 nfv 1913 . . . . . . . . . . 11 𝑥 𝑏 ∈ ℤ
12 nfre1 3291 . . . . . . . . . . 11 𝑥𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)
1311, 12nfan 1898 . . . . . . . . . 10 𝑥(𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))
14 nfv 1913 . . . . . . . . . 10 𝑥𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)
1513, 14nfim 1895 . . . . . . . . 9 𝑥((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
1610, 15nfim 1895 . . . . . . . 8 𝑥(𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
17 simpll 766 . . . . . . . . . . 11 (((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) → 𝑥 ∈ ℤ)
18 simpl 482 . . . . . . . . . . 11 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℤ)
19 zmulcl 12692 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑏 ∈ ℤ) → (𝑥 · 𝑏) ∈ ℤ)
2017, 18, 19syl2an 595 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑥 · 𝑏) ∈ ℤ)
21 oveq2 7456 . . . . . . . . . . . 12 (𝑦 = (𝑥 · 𝑏) → (2 · 𝑦) = (2 · (𝑥 · 𝑏)))
2221eqeq2d 2751 . . . . . . . . . . 11 (𝑦 = (𝑥 · 𝑏) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
2322adantl 481 . . . . . . . . . 10 (((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) ∧ 𝑦 = (𝑥 · 𝑏)) → ((𝑎 · 𝑏) = (2 · 𝑦) ↔ (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏))))
24 oveq1 7455 . . . . . . . . . . . 12 (𝑎 = (2 · 𝑥) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
2524ad3antlr 730 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = ((2 · 𝑥) · 𝑏))
26 2cnd 12371 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 2 ∈ ℂ)
27 zcn 12644 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
2827ad3antrrr 729 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑥 ∈ ℂ)
29 zcn 12644 . . . . . . . . . . . . . 14 (𝑏 ∈ ℤ → 𝑏 ∈ ℂ)
3029adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → 𝑏 ∈ ℂ)
3130adantl 481 . . . . . . . . . . . 12 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → 𝑏 ∈ ℂ)
3226, 28, 31mulassd 11313 . . . . . . . . . . 11 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ((2 · 𝑥) · 𝑏) = (2 · (𝑥 · 𝑏)))
3325, 32eqtrd 2780 . . . . . . . . . 10 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) = (2 · (𝑥 · 𝑏)))
3420, 23, 33rspcedvd 3637 . . . . . . . . 9 ((((𝑥 ∈ ℤ ∧ 𝑎 = (2 · 𝑥)) ∧ 𝑎 ∈ ℤ) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
3534exp41 434 . . . . . . . 8 (𝑥 ∈ ℤ → (𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))))
3616, 35rexlimi 3265 . . . . . . 7 (∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥) → (𝑎 ∈ ℤ → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))))
3736impcom 407 . . . . . 6 ((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) → ((𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥)) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
3837imp 406 . . . . 5 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
39 eqeq1 2744 . . . . . . . 8 (𝑧 = (𝑎 · 𝑏) → (𝑧 = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑥)))
4039rexbidv 3185 . . . . . . 7 (𝑧 = (𝑎 · 𝑏) → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
4140, 3elrab2 3711 . . . . . 6 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)))
42 oveq2 7456 . . . . . . . . 9 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
4342eqeq2d 2751 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑎 · 𝑏) = (2 · 𝑥) ↔ (𝑎 · 𝑏) = (2 · 𝑦)))
4443cbvrexvw 3244 . . . . . . 7 (∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥) ↔ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦))
4544anbi2i 622 . . . . . 6 (((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑥 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑥)) ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
4641, 45bitri 275 . . . . 5 ((𝑎 · 𝑏) ∈ 𝐸 ↔ ((𝑎 · 𝑏) ∈ ℤ ∧ ∃𝑦 ∈ ℤ (𝑎 · 𝑏) = (2 · 𝑦)))
479, 38, 46sylanbrc 582 . . . 4 (((𝑎 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑎 = (2 · 𝑥)) ∧ (𝑏 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 𝑏 = (2 · 𝑥))) → (𝑎 · 𝑏) ∈ 𝐸)
484, 7, 47syl2anb 597 . . 3 ((𝑎𝐸𝑏𝐸) → (𝑎 · 𝑏) ∈ 𝐸)
4948rgen2 3205 . 2 𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸
5030even 47960 . . 3 0 ∈ 𝐸
51 2zrngmmgm.1 . . . . 5 𝑀 = (mulGrp‘𝑅)
52 2zrngbas.r . . . . . 6 𝑅 = (ℂflds 𝐸)
533, 522zrngbas 47965 . . . . 5 𝐸 = (Base‘𝑅)
5451, 53mgpbas 20167 . . . 4 𝐸 = (Base‘𝑀)
553, 522zrngmul 47974 . . . . 5 · = (.r𝑅)
5651, 55mgpplusg 20165 . . . 4 · = (+g𝑀)
5754, 56ismgmn0 18680 . . 3 (0 ∈ 𝐸 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸))
5850, 57ax-mp 5 . 2 (𝑀 ∈ Mgm ↔ ∀𝑎𝐸𝑏𝐸 (𝑎 · 𝑏) ∈ 𝐸)
5949, 58mpbir 231 1 𝑀 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184   · cmul 11189  2c2 12348  cz 12639  s cress 17287  Mgmcmgm 18676  mulGrpcmgp 20161  fldccnfld 21387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-mgm 18678  df-mgp 20162  df-cnfld 21388
This theorem is referenced by:  2zrngmsgrp  47976
  Copyright terms: Public domain W3C validator