| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xkobval | Structured version Visualization version GIF version | ||
| Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| xkoval.x | ⊢ 𝑋 = ∪ 𝑅 |
| xkoval.k | ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} |
| xkoval.t | ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
| Ref | Expression |
|---|---|
| xkobval | ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkoval.t | . . 3 ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | |
| 2 | 1 | rnmpo 7488 | . 2 ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} |
| 3 | oveq2 7363 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑅 ↾t 𝑥) = (𝑅 ↾t 𝑘)) | |
| 4 | 3 | eleq1d 2818 | . . . . 5 ⊢ (𝑥 = 𝑘 → ((𝑅 ↾t 𝑥) ∈ Comp ↔ (𝑅 ↾t 𝑘) ∈ Comp)) |
| 5 | 4 | rexrab 3651 | . . . 4 ⊢ (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
| 6 | xkoval.k | . . . . 5 ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} | |
| 7 | 6 | rexeqi 3292 | . . . 4 ⊢ (∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
| 8 | r19.42v 3165 | . . . . 5 ⊢ (∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) | |
| 9 | 8 | rexbii 3080 | . . . 4 ⊢ (∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
| 10 | 5, 7, 9 | 3bitr4i 303 | . . 3 ⊢ (∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
| 11 | 10 | abbii 2800 | . 2 ⊢ {𝑠 ∣ ∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
| 12 | 2, 11 | eqtri 2756 | 1 ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 {crab 3396 ⊆ wss 3898 𝒫 cpw 4551 ∪ cuni 4860 ran crn 5622 “ cima 5624 (class class class)co 7355 ∈ cmpo 7357 ↾t crest 17331 Cn ccn 23159 Compccmp 23321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 df-iota 6445 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 |
| This theorem is referenced by: xkoccn 23554 xkoco1cn 23592 xkoco2cn 23593 xkoinjcn 23622 |
| Copyright terms: Public domain | W3C validator |