Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xkobval | Structured version Visualization version GIF version |
Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
xkoval.x | ⊢ 𝑋 = ∪ 𝑅 |
xkoval.k | ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} |
xkoval.t | ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
Ref | Expression |
---|---|
xkobval | ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xkoval.t | . . 3 ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | |
2 | 1 | rnmpo 7407 | . 2 ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} |
3 | oveq2 7283 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑅 ↾t 𝑥) = (𝑅 ↾t 𝑘)) | |
4 | 3 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝑘 → ((𝑅 ↾t 𝑥) ∈ Comp ↔ (𝑅 ↾t 𝑘) ∈ Comp)) |
5 | 4 | rexrab 3633 | . . . 4 ⊢ (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
6 | xkoval.k | . . . . 5 ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} | |
7 | 6 | rexeqi 3347 | . . . 4 ⊢ (∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
8 | r19.42v 3279 | . . . . 5 ⊢ (∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) | |
9 | 8 | rexbii 3181 | . . . 4 ⊢ (∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
10 | 5, 7, 9 | 3bitr4i 303 | . . 3 ⊢ (∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
11 | 10 | abbii 2808 | . 2 ⊢ {𝑠 ∣ ∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
12 | 2, 11 | eqtri 2766 | 1 ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 {crab 3068 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ran crn 5590 “ cima 5592 (class class class)co 7275 ∈ cmpo 7277 ↾t crest 17131 Cn ccn 22375 Compccmp 22537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 df-iota 6391 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 |
This theorem is referenced by: xkoccn 22770 xkoco1cn 22808 xkoco2cn 22809 xkoinjcn 22838 |
Copyright terms: Public domain | W3C validator |