MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkobval Structured version   Visualization version   GIF version

Theorem xkobval 23489
Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkobval ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
Distinct variable groups:   𝑘,𝑠,𝑣,𝐾   𝑓,𝑘,𝑠,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑠,𝑣,𝑥   𝑇,𝑠   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓,𝑠)

Proof of Theorem xkobval
StepHypRef Expression
1 xkoval.t . . 3 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
21rnmpo 7486 . 2 ran 𝑇 = {𝑠 ∣ ∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
3 oveq2 7361 . . . . . 6 (𝑥 = 𝑘 → (𝑅t 𝑥) = (𝑅t 𝑘))
43eleq1d 2813 . . . . 5 (𝑥 = 𝑘 → ((𝑅t 𝑥) ∈ Comp ↔ (𝑅t 𝑘) ∈ Comp))
54rexrab 3658 . . . 4 (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
6 xkoval.k . . . . 5 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
76rexeqi 3289 . . . 4 (∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
8 r19.42v 3161 . . . . 5 (∃𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
98rexbii 3076 . . . 4 (∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
105, 7, 93bitr4i 303 . . 3 (∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
1110abbii 2796 . 2 {𝑠 ∣ ∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
122, 11eqtri 2752 1 ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3396  wss 3905  𝒫 cpw 4553   cuni 4861  ran crn 5624  cima 5626  (class class class)co 7353  cmpo 7355  t crest 17342   Cn ccn 23127  Compccmp 23289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-cnv 5631  df-dm 5633  df-rn 5634  df-iota 6442  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358
This theorem is referenced by:  xkoccn  23522  xkoco1cn  23560  xkoco2cn  23561  xkoinjcn  23590
  Copyright terms: Public domain W3C validator