Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xkobval | Structured version Visualization version GIF version |
Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.) |
Ref | Expression |
---|---|
xkoval.x | ⊢ 𝑋 = ∪ 𝑅 |
xkoval.k | ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} |
xkoval.t | ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
Ref | Expression |
---|---|
xkobval | ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xkoval.t | . . 3 ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | |
2 | 1 | rnmpo 7385 | . 2 ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} |
3 | oveq2 7263 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑅 ↾t 𝑥) = (𝑅 ↾t 𝑘)) | |
4 | 3 | eleq1d 2823 | . . . . 5 ⊢ (𝑥 = 𝑘 → ((𝑅 ↾t 𝑥) ∈ Comp ↔ (𝑅 ↾t 𝑘) ∈ Comp)) |
5 | 4 | rexrab 3626 | . . . 4 ⊢ (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
6 | xkoval.k | . . . . 5 ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} | |
7 | 6 | rexeqi 3338 | . . . 4 ⊢ (∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp}∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
8 | r19.42v 3276 | . . . . 5 ⊢ (∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) | |
9 | 8 | rexbii 3177 | . . . 4 ⊢ (∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
10 | 5, 7, 9 | 3bitr4i 302 | . . 3 ⊢ (∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})) |
11 | 10 | abbii 2809 | . 2 ⊢ {𝑠 ∣ ∃𝑘 ∈ 𝐾 ∃𝑣 ∈ 𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}} = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
12 | 2, 11 | eqtri 2766 | 1 ⊢ ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋∃𝑣 ∈ 𝑆 ((𝑅 ↾t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 {crab 3067 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ran crn 5581 “ cima 5583 (class class class)co 7255 ∈ cmpo 7257 ↾t crest 17048 Cn ccn 22283 Compccmp 22445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-iota 6376 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: xkoccn 22678 xkoco1cn 22716 xkoco2cn 22717 xkoinjcn 22746 |
Copyright terms: Public domain | W3C validator |