MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkobval Structured version   Visualization version   GIF version

Theorem xkobval 23502
Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkobval ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
Distinct variable groups:   𝑘,𝑠,𝑣,𝐾   𝑓,𝑘,𝑠,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑠,𝑣,𝑥   𝑇,𝑠   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓,𝑠)

Proof of Theorem xkobval
StepHypRef Expression
1 xkoval.t . . 3 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
21rnmpo 7479 . 2 ran 𝑇 = {𝑠 ∣ ∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
3 oveq2 7354 . . . . . 6 (𝑥 = 𝑘 → (𝑅t 𝑥) = (𝑅t 𝑘))
43eleq1d 2816 . . . . 5 (𝑥 = 𝑘 → ((𝑅t 𝑥) ∈ Comp ↔ (𝑅t 𝑘) ∈ Comp))
54rexrab 3655 . . . 4 (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
6 xkoval.k . . . . 5 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
76rexeqi 3291 . . . 4 (∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
8 r19.42v 3164 . . . . 5 (∃𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
98rexbii 3079 . . . 4 (∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
105, 7, 93bitr4i 303 . . 3 (∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
1110abbii 2798 . 2 {𝑠 ∣ ∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
122, 11eqtri 2754 1 ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {crab 3395  wss 3902  𝒫 cpw 4550   cuni 4859  ran crn 5617  cima 5619  (class class class)co 7346  cmpo 7348  t crest 17324   Cn ccn 23140  Compccmp 23302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-cnv 5624  df-dm 5626  df-rn 5627  df-iota 6437  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  xkoccn  23535  xkoco1cn  23573  xkoco2cn  23574  xkoinjcn  23603
  Copyright terms: Public domain W3C validator