MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkobval Structured version   Visualization version   GIF version

Theorem xkobval 23310
Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkobval ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
Distinct variable groups:   𝑘,𝑠,𝑣,𝐾   𝑓,𝑘,𝑠,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑠,𝑣,𝑥   𝑇,𝑠   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓,𝑠)

Proof of Theorem xkobval
StepHypRef Expression
1 xkoval.t . . 3 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
21rnmpo 7544 . 2 ran 𝑇 = {𝑠 ∣ ∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}}
3 oveq2 7419 . . . . . 6 (𝑥 = 𝑘 → (𝑅t 𝑥) = (𝑅t 𝑘))
43eleq1d 2816 . . . . 5 (𝑥 = 𝑘 → ((𝑅t 𝑥) ∈ Comp ↔ (𝑅t 𝑘) ∈ Comp))
54rexrab 3691 . . . 4 (∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
6 xkoval.k . . . . 5 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
76rexeqi 3322 . . . 4 (∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
8 r19.42v 3188 . . . . 5 (∃𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
98rexbii 3092 . . . 4 (∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑋((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
105, 7, 93bitr4i 302 . . 3 (∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
1110abbii 2800 . 2 {𝑠 ∣ ∃𝑘𝐾𝑣𝑆 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}} = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
122, 11eqtri 2758 1 ran 𝑇 = {𝑠 ∣ ∃𝑘 ∈ 𝒫 𝑋𝑣𝑆 ((𝑅t 𝑘) ∈ Comp ∧ 𝑠 = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})}
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1539  wcel 2104  {cab 2707  wrex 3068  {crab 3430  wss 3947  𝒫 cpw 4601   cuni 4907  ran crn 5676  cima 5678  (class class class)co 7411  cmpo 7413  t crest 17370   Cn ccn 22948  Compccmp 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-cnv 5683  df-dm 5685  df-rn 5686  df-iota 6494  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416
This theorem is referenced by:  xkoccn  23343  xkoco1cn  23381  xkoco2cn  23382  xkoinjcn  23411
  Copyright terms: Public domain W3C validator