MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfrn Structured version   Visualization version   GIF version

Theorem pmtrfrn 18347
Description: A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t 𝑇 = (pmTrsp‘𝐷)
pmtrrn.r 𝑅 = ran 𝑇
pmtrfrn.p 𝑃 = dom (𝐹 ∖ I )
Assertion
Ref Expression
pmtrfrn (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃)))

Proof of Theorem pmtrfrn
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 4184 . . . 4 ¬ 𝐹 ∈ ∅
2 pmtrrn.r . . . . . 6 𝑅 = ran 𝑇
3 pmtrrn.t . . . . . . 7 𝑇 = (pmTrsp‘𝐷)
43rnfvprc 6493 . . . . . 6 𝐷 ∈ V → ran 𝑇 = ∅)
52, 4syl5eq 2827 . . . . 5 𝐷 ∈ V → 𝑅 = ∅)
65eleq2d 2852 . . . 4 𝐷 ∈ V → (𝐹𝑅𝐹 ∈ ∅))
71, 6mtbiri 319 . . 3 𝐷 ∈ V → ¬ 𝐹𝑅)
87con4i 114 . 2 (𝐹𝑅𝐷 ∈ V)
9 mptexg 6810 . . . . . . . 8 (𝐷 ∈ V → (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)) ∈ V)
109ralrimivw 3134 . . . . . . 7 (𝐷 ∈ V → ∀𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)) ∈ V)
11 eqid 2779 . . . . . . . 8 (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) = (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)))
1211fnmpt 6318 . . . . . . 7 (∀𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧)) ∈ V → (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
1310, 12syl 17 . . . . . 6 (𝐷 ∈ V → (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
143pmtrfval 18339 . . . . . . 7 (𝐷 ∈ V → 𝑇 = (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))))
1514fneq1d 6279 . . . . . 6 (𝐷 ∈ V → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↔ (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} ↦ (𝑧𝐷 ↦ if(𝑧𝑤, (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o}))
1613, 15mpbird 249 . . . . 5 (𝐷 ∈ V → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o})
17 fvelrnb 6556 . . . . 5 (𝑇 Fn {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} → (𝐹 ∈ ran 𝑇 ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑇𝑦) = 𝐹))
1816, 17syl 17 . . . 4 (𝐷 ∈ V → (𝐹 ∈ ran 𝑇 ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑇𝑦) = 𝐹))
192eleq2i 2858 . . . 4 (𝐹𝑅𝐹 ∈ ran 𝑇)
20 breq1 4932 . . . . . 6 (𝑥 = 𝑦 → (𝑥 ≈ 2o𝑦 ≈ 2o))
2120rexrab 3604 . . . . 5 (∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑇𝑦) = 𝐹 ↔ ∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2o ∧ (𝑇𝑦) = 𝐹))
2221bicomi 216 . . . 4 (∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2o ∧ (𝑇𝑦) = 𝐹) ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷𝑥 ≈ 2o} (𝑇𝑦) = 𝐹)
2318, 19, 223bitr4g 306 . . 3 (𝐷 ∈ V → (𝐹𝑅 ↔ ∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2o ∧ (𝑇𝑦) = 𝐹)))
24 elpwi 4432 . . . . 5 (𝑦 ∈ 𝒫 𝐷𝑦𝐷)
25 simp1 1116 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → 𝐷 ∈ V)
263pmtrmvd 18345 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → dom ((𝑇𝑦) ∖ I ) = 𝑦)
27 simp2 1117 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → 𝑦𝐷)
2826, 27eqsstrd 3896 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷)
29 simp3 1118 . . . . . . . . . . 11 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → 𝑦 ≈ 2o)
3026, 29eqbrtrd 4951 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → dom ((𝑇𝑦) ∖ I ) ≈ 2o)
3125, 28, 303jca 1108 . . . . . . . . 9 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → (𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2o))
3226eqcomd 2785 . . . . . . . . . 10 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → 𝑦 = dom ((𝑇𝑦) ∖ I ))
3332fveq2d 6503 . . . . . . . . 9 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I )))
3431, 33jca 504 . . . . . . . 8 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → ((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2o) ∧ (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I ))))
35 difeq1 3983 . . . . . . . . . . 11 ((𝑇𝑦) = 𝐹 → ((𝑇𝑦) ∖ I ) = (𝐹 ∖ I ))
3635dmeqd 5624 . . . . . . . . . 10 ((𝑇𝑦) = 𝐹 → dom ((𝑇𝑦) ∖ I ) = dom (𝐹 ∖ I ))
37 pmtrfrn.p . . . . . . . . . 10 𝑃 = dom (𝐹 ∖ I )
3836, 37syl6eqr 2833 . . . . . . . . 9 ((𝑇𝑦) = 𝐹 → dom ((𝑇𝑦) ∖ I ) = 𝑃)
39 sseq1 3883 . . . . . . . . . . . 12 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → (dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷𝑃𝐷))
40 breq1 4932 . . . . . . . . . . . 12 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → (dom ((𝑇𝑦) ∖ I ) ≈ 2o𝑃 ≈ 2o))
4139, 403anbi23d 1418 . . . . . . . . . . 11 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → ((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2o) ↔ (𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o)))
4241adantl 474 . . . . . . . . . 10 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → ((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2o) ↔ (𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o)))
43 simpl 475 . . . . . . . . . . 11 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → (𝑇𝑦) = 𝐹)
44 fveq2 6499 . . . . . . . . . . . 12 (dom ((𝑇𝑦) ∖ I ) = 𝑃 → (𝑇‘dom ((𝑇𝑦) ∖ I )) = (𝑇𝑃))
4544adantl 474 . . . . . . . . . . 11 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → (𝑇‘dom ((𝑇𝑦) ∖ I )) = (𝑇𝑃))
4643, 45eqeq12d 2794 . . . . . . . . . 10 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → ((𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I )) ↔ 𝐹 = (𝑇𝑃)))
4742, 46anbi12d 621 . . . . . . . . 9 (((𝑇𝑦) = 𝐹 ∧ dom ((𝑇𝑦) ∖ I ) = 𝑃) → (((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2o) ∧ (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I ))) ↔ ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃))))
4838, 47mpdan 674 . . . . . . . 8 ((𝑇𝑦) = 𝐹 → (((𝐷 ∈ V ∧ dom ((𝑇𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇𝑦) ∖ I ) ≈ 2o) ∧ (𝑇𝑦) = (𝑇‘dom ((𝑇𝑦) ∖ I ))) ↔ ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃))))
4934, 48syl5ibcom 237 . . . . . . 7 ((𝐷 ∈ V ∧ 𝑦𝐷𝑦 ≈ 2o) → ((𝑇𝑦) = 𝐹 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃))))
50493exp 1099 . . . . . 6 (𝐷 ∈ V → (𝑦𝐷 → (𝑦 ≈ 2o → ((𝑇𝑦) = 𝐹 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃))))))
5150imp4a 415 . . . . 5 (𝐷 ∈ V → (𝑦𝐷 → ((𝑦 ≈ 2o ∧ (𝑇𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃)))))
5224, 51syl5 34 . . . 4 (𝐷 ∈ V → (𝑦 ∈ 𝒫 𝐷 → ((𝑦 ≈ 2o ∧ (𝑇𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃)))))
5352rexlimdv 3229 . . 3 (𝐷 ∈ V → (∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2o ∧ (𝑇𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃))))
5423, 53sylbid 232 . 2 (𝐷 ∈ V → (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃))))
558, 54mpcom 38 1 (𝐹𝑅 → ((𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o) ∧ 𝐹 = (𝑇𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3089  wrex 3090  {crab 3093  Vcvv 3416  cdif 3827  wss 3830  c0 4179  ifcif 4350  𝒫 cpw 4422  {csn 4441   cuni 4712   class class class wbr 4929  cmpt 5008   I cid 5311  dom cdm 5407  ran crn 5408   Fn wfn 6183  cfv 6188  2oc2o 7899  cen 8303  pmTrspcpmtr 18330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-om 7397  df-1o 7905  df-2o 7906  df-er 8089  df-en 8307  df-fin 8310  df-pmtr 18331
This theorem is referenced by:  pmtrffv  18348  pmtrrn2  18349  pmtrfinv  18350  pmtrfmvdn0  18351  pmtrff1o  18352  pmtrfcnv  18353  pmtrfb  18354
  Copyright terms: Public domain W3C validator