Step | Hyp | Ref
| Expression |
1 | | noel 4264 |
. . . 4
⊢ ¬
𝐹 ∈
∅ |
2 | | pmtrrn.r |
. . . . . 6
⊢ 𝑅 = ran 𝑇 |
3 | | pmtrrn.t |
. . . . . . 7
⊢ 𝑇 = (pmTrsp‘𝐷) |
4 | 3 | rnfvprc 6768 |
. . . . . 6
⊢ (¬
𝐷 ∈ V → ran 𝑇 = ∅) |
5 | 2, 4 | eqtrid 2790 |
. . . . 5
⊢ (¬
𝐷 ∈ V → 𝑅 = ∅) |
6 | 5 | eleq2d 2824 |
. . . 4
⊢ (¬
𝐷 ∈ V → (𝐹 ∈ 𝑅 ↔ 𝐹 ∈ ∅)) |
7 | 1, 6 | mtbiri 327 |
. . 3
⊢ (¬
𝐷 ∈ V → ¬
𝐹 ∈ 𝑅) |
8 | 7 | con4i 114 |
. 2
⊢ (𝐹 ∈ 𝑅 → 𝐷 ∈ V) |
9 | | mptexg 7097 |
. . . . . . . 8
⊢ (𝐷 ∈ V → (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑤, ∪ (𝑤 ∖ {𝑧}), 𝑧)) ∈ V) |
10 | 9 | ralrimivw 3104 |
. . . . . . 7
⊢ (𝐷 ∈ V → ∀𝑤 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑤, ∪ (𝑤 ∖ {𝑧}), 𝑧)) ∈ V) |
11 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑤, ∪ (𝑤 ∖ {𝑧}), 𝑧))) = (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑤, ∪ (𝑤 ∖ {𝑧}), 𝑧))) |
12 | 11 | fnmpt 6573 |
. . . . . . 7
⊢
(∀𝑤 ∈
{𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑤, ∪ (𝑤 ∖ {𝑧}), 𝑧)) ∈ V → (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑤, ∪ (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
13 | 10, 12 | syl 17 |
. . . . . 6
⊢ (𝐷 ∈ V → (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑤, ∪ (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
14 | 3 | pmtrfval 19058 |
. . . . . . 7
⊢ (𝐷 ∈ V → 𝑇 = (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑤, ∪ (𝑤 ∖ {𝑧}), 𝑧)))) |
15 | 14 | fneq1d 6526 |
. . . . . 6
⊢ (𝐷 ∈ V → (𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↔ (𝑤 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} ↦ (𝑧 ∈ 𝐷 ↦ if(𝑧 ∈ 𝑤, ∪ (𝑤 ∖ {𝑧}), 𝑧))) Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o})) |
16 | 13, 15 | mpbird 256 |
. . . . 5
⊢ (𝐷 ∈ V → 𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o}) |
17 | | fvelrnb 6830 |
. . . . 5
⊢ (𝑇 Fn {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} → (𝐹 ∈ ran 𝑇 ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑇‘𝑦) = 𝐹)) |
18 | 16, 17 | syl 17 |
. . . 4
⊢ (𝐷 ∈ V → (𝐹 ∈ ran 𝑇 ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑇‘𝑦) = 𝐹)) |
19 | 2 | eleq2i 2830 |
. . . 4
⊢ (𝐹 ∈ 𝑅 ↔ 𝐹 ∈ ran 𝑇) |
20 | | breq1 5077 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ≈ 2o ↔ 𝑦 ≈
2o)) |
21 | 20 | rexrab 3633 |
. . . . 5
⊢
(∃𝑦 ∈
{𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑇‘𝑦) = 𝐹 ↔ ∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2o ∧ (𝑇‘𝑦) = 𝐹)) |
22 | 21 | bicomi 223 |
. . . 4
⊢
(∃𝑦 ∈
𝒫 𝐷(𝑦 ≈ 2o ∧
(𝑇‘𝑦) = 𝐹) ↔ ∃𝑦 ∈ {𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o} (𝑇‘𝑦) = 𝐹) |
23 | 18, 19, 22 | 3bitr4g 314 |
. . 3
⊢ (𝐷 ∈ V → (𝐹 ∈ 𝑅 ↔ ∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2o ∧ (𝑇‘𝑦) = 𝐹))) |
24 | | elpwi 4542 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 𝐷 → 𝑦 ⊆ 𝐷) |
25 | | simp1 1135 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → 𝐷 ∈ V) |
26 | 3 | pmtrmvd 19064 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → dom ((𝑇‘𝑦) ∖ I ) = 𝑦) |
27 | | simp2 1136 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → 𝑦 ⊆ 𝐷) |
28 | 26, 27 | eqsstrd 3959 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → dom ((𝑇‘𝑦) ∖ I ) ⊆ 𝐷) |
29 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → 𝑦 ≈
2o) |
30 | 26, 29 | eqbrtrd 5096 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → dom ((𝑇‘𝑦) ∖ I ) ≈
2o) |
31 | 25, 28, 30 | 3jca 1127 |
. . . . . . . . 9
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → (𝐷 ∈ V ∧ dom ((𝑇‘𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇‘𝑦) ∖ I ) ≈
2o)) |
32 | 26 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → 𝑦 = dom ((𝑇‘𝑦) ∖ I )) |
33 | 32 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → (𝑇‘𝑦) = (𝑇‘dom ((𝑇‘𝑦) ∖ I ))) |
34 | 31, 33 | jca 512 |
. . . . . . . 8
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → ((𝐷 ∈ V ∧ dom ((𝑇‘𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇‘𝑦) ∖ I ) ≈ 2o) ∧
(𝑇‘𝑦) = (𝑇‘dom ((𝑇‘𝑦) ∖ I )))) |
35 | | difeq1 4050 |
. . . . . . . . . . 11
⊢ ((𝑇‘𝑦) = 𝐹 → ((𝑇‘𝑦) ∖ I ) = (𝐹 ∖ I )) |
36 | 35 | dmeqd 5814 |
. . . . . . . . . 10
⊢ ((𝑇‘𝑦) = 𝐹 → dom ((𝑇‘𝑦) ∖ I ) = dom (𝐹 ∖ I )) |
37 | | pmtrfrn.p |
. . . . . . . . . 10
⊢ 𝑃 = dom (𝐹 ∖ I ) |
38 | 36, 37 | eqtr4di 2796 |
. . . . . . . . 9
⊢ ((𝑇‘𝑦) = 𝐹 → dom ((𝑇‘𝑦) ∖ I ) = 𝑃) |
39 | | sseq1 3946 |
. . . . . . . . . . . 12
⊢ (dom
((𝑇‘𝑦) ∖ I ) = 𝑃 → (dom ((𝑇‘𝑦) ∖ I ) ⊆ 𝐷 ↔ 𝑃 ⊆ 𝐷)) |
40 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (dom
((𝑇‘𝑦) ∖ I ) = 𝑃 → (dom ((𝑇‘𝑦) ∖ I ) ≈ 2o ↔
𝑃 ≈
2o)) |
41 | 39, 40 | 3anbi23d 1438 |
. . . . . . . . . . 11
⊢ (dom
((𝑇‘𝑦) ∖ I ) = 𝑃 → ((𝐷 ∈ V ∧ dom ((𝑇‘𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇‘𝑦) ∖ I ) ≈ 2o) ↔
(𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o))) |
42 | 41 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑇‘𝑦) = 𝐹 ∧ dom ((𝑇‘𝑦) ∖ I ) = 𝑃) → ((𝐷 ∈ V ∧ dom ((𝑇‘𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇‘𝑦) ∖ I ) ≈ 2o) ↔
(𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o))) |
43 | | simpl 483 |
. . . . . . . . . . 11
⊢ (((𝑇‘𝑦) = 𝐹 ∧ dom ((𝑇‘𝑦) ∖ I ) = 𝑃) → (𝑇‘𝑦) = 𝐹) |
44 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (dom
((𝑇‘𝑦) ∖ I ) = 𝑃 → (𝑇‘dom ((𝑇‘𝑦) ∖ I )) = (𝑇‘𝑃)) |
45 | 44 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑇‘𝑦) = 𝐹 ∧ dom ((𝑇‘𝑦) ∖ I ) = 𝑃) → (𝑇‘dom ((𝑇‘𝑦) ∖ I )) = (𝑇‘𝑃)) |
46 | 43, 45 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (((𝑇‘𝑦) = 𝐹 ∧ dom ((𝑇‘𝑦) ∖ I ) = 𝑃) → ((𝑇‘𝑦) = (𝑇‘dom ((𝑇‘𝑦) ∖ I )) ↔ 𝐹 = (𝑇‘𝑃))) |
47 | 42, 46 | anbi12d 631 |
. . . . . . . . 9
⊢ (((𝑇‘𝑦) = 𝐹 ∧ dom ((𝑇‘𝑦) ∖ I ) = 𝑃) → (((𝐷 ∈ V ∧ dom ((𝑇‘𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇‘𝑦) ∖ I ) ≈ 2o) ∧
(𝑇‘𝑦) = (𝑇‘dom ((𝑇‘𝑦) ∖ I ))) ↔ ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃)))) |
48 | 38, 47 | mpdan 684 |
. . . . . . . 8
⊢ ((𝑇‘𝑦) = 𝐹 → (((𝐷 ∈ V ∧ dom ((𝑇‘𝑦) ∖ I ) ⊆ 𝐷 ∧ dom ((𝑇‘𝑦) ∖ I ) ≈ 2o) ∧
(𝑇‘𝑦) = (𝑇‘dom ((𝑇‘𝑦) ∖ I ))) ↔ ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃)))) |
49 | 34, 48 | syl5ibcom 244 |
. . . . . . 7
⊢ ((𝐷 ∈ V ∧ 𝑦 ⊆ 𝐷 ∧ 𝑦 ≈ 2o) → ((𝑇‘𝑦) = 𝐹 → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃)))) |
50 | 49 | 3exp 1118 |
. . . . . 6
⊢ (𝐷 ∈ V → (𝑦 ⊆ 𝐷 → (𝑦 ≈ 2o → ((𝑇‘𝑦) = 𝐹 → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃)))))) |
51 | 50 | imp4a 423 |
. . . . 5
⊢ (𝐷 ∈ V → (𝑦 ⊆ 𝐷 → ((𝑦 ≈ 2o ∧ (𝑇‘𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃))))) |
52 | 24, 51 | syl5 34 |
. . . 4
⊢ (𝐷 ∈ V → (𝑦 ∈ 𝒫 𝐷 → ((𝑦 ≈ 2o ∧ (𝑇‘𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃))))) |
53 | 52 | rexlimdv 3212 |
. . 3
⊢ (𝐷 ∈ V → (∃𝑦 ∈ 𝒫 𝐷(𝑦 ≈ 2o ∧ (𝑇‘𝑦) = 𝐹) → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃)))) |
54 | 23, 53 | sylbid 239 |
. 2
⊢ (𝐷 ∈ V → (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃)))) |
55 | 8, 54 | mpcom 38 |
1
⊢ (𝐹 ∈ 𝑅 → ((𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o) ∧ 𝐹 = (𝑇‘𝑃))) |