| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspd | Structured version Visualization version GIF version | ||
| Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| ellspd.n | ⊢ 𝑁 = (LSpan‘𝑀) |
| ellspd.v | ⊢ 𝐵 = (Base‘𝑀) |
| ellspd.k | ⊢ 𝐾 = (Base‘𝑆) |
| ellspd.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| ellspd.z | ⊢ 0 = (0g‘𝑆) |
| ellspd.t | ⊢ · = ( ·𝑠 ‘𝑀) |
| ellspd.f | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| ellspd.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| ellspd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ellspd | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 2 | ffn 6688 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝐵 → 𝐹 Fn 𝐼) | |
| 3 | fnima 6648 | . . . . . 6 ⊢ (𝐹 Fn 𝐼 → (𝐹 “ 𝐼) = ran 𝐹) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐼) = ran 𝐹) |
| 5 | 4 | fveq2d 6862 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝐹 “ 𝐼)) = (𝑁‘ran 𝐹)) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) = (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) | |
| 7 | 6 | rnmpt 5921 | . . . . 5 ⊢ ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} |
| 8 | eqid 2729 | . . . . . 6 ⊢ (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼) | |
| 9 | eqid 2729 | . . . . . 6 ⊢ (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼)) | |
| 10 | ellspd.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 11 | ellspd.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 12 | ellspd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 13 | ellspd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 14 | ellspd.s | . . . . . . 7 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (Scalar‘𝑀)) |
| 16 | ellspd.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑀) | |
| 17 | 8, 9, 10, 11, 6, 12, 13, 15, 1, 16 | frlmup3 21709 | . . . . 5 ⊢ (𝜑 → ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) = (𝑁‘ran 𝐹)) |
| 18 | 7, 17 | eqtr3id 2778 | . . . 4 ⊢ (𝜑 → {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} = (𝑁‘ran 𝐹)) |
| 19 | 5, 18 | eqtr4d 2767 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐹 “ 𝐼)) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))}) |
| 20 | 19 | eleq2d 2814 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ 𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))})) |
| 21 | ovex 7420 | . . . . . 6 ⊢ (𝑀 Σg (𝑓 ∘f · 𝐹)) ∈ V | |
| 22 | eleq1 2816 | . . . . . 6 ⊢ (𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) → (𝑋 ∈ V ↔ (𝑀 Σg (𝑓 ∘f · 𝐹)) ∈ V)) | |
| 23 | 21, 22 | mpbiri 258 | . . . . 5 ⊢ (𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) → 𝑋 ∈ V) |
| 24 | 23 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) → 𝑋 ∈ V) |
| 25 | eqeq1 2733 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) | |
| 26 | 25 | rexbidv 3157 | . . . 4 ⊢ (𝑎 = 𝑋 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
| 27 | 24, 26 | elab3 3653 | . . 3 ⊢ (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))) |
| 28 | 14 | fvexi 6872 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 29 | ellspd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑆) | |
| 30 | ellspd.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑆) | |
| 31 | eqid 2729 | . . . . . . . 8 ⊢ {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } = {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } | |
| 32 | 8, 29, 30, 31 | frlmbas 21664 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝐼 ∈ 𝑉) → {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼))) |
| 33 | 28, 13, 32 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼))) |
| 34 | 33 | eqcomd 2735 | . . . . 5 ⊢ (𝜑 → (Base‘(𝑆 freeLMod 𝐼)) = {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 }) |
| 35 | 34 | rexeqdv 3300 | . . . 4 ⊢ (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
| 36 | breq1 5110 | . . . . 5 ⊢ (𝑎 = 𝑓 → (𝑎 finSupp 0 ↔ 𝑓 finSupp 0 )) | |
| 37 | 36 | rexrab 3667 | . . . 4 ⊢ (∃𝑓 ∈ {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
| 38 | 35, 37 | bitrdi 287 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
| 39 | 27, 38 | bitrid 283 | . 2 ⊢ (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
| 40 | 20, 39 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {crab 3405 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ↑m cmap 8799 finSupp cfsupp 9312 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 Σg cgsu 17403 LModclmod 20766 LSpanclspn 20877 freeLMod cfrlm 21655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-nzr 20422 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lmhm 20929 df-lbs 20982 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-uvc 21692 |
| This theorem is referenced by: elfilspd 21712 islindf4 21747 ellspds 33339 ply1degltdimlem 33618 fedgmul 33627 |
| Copyright terms: Public domain | W3C validator |