MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspd Structured version   Visualization version   GIF version

Theorem ellspd 21823
Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
ellspd.n 𝑁 = (LSpan‘𝑀)
ellspd.v 𝐵 = (Base‘𝑀)
ellspd.k 𝐾 = (Base‘𝑆)
ellspd.s 𝑆 = (Scalar‘𝑀)
ellspd.z 0 = (0g𝑆)
ellspd.t · = ( ·𝑠𝑀)
ellspd.f (𝜑𝐹:𝐼𝐵)
ellspd.m (𝜑𝑀 ∈ LMod)
ellspd.i (𝜑𝐼𝑉)
Assertion
Ref Expression
ellspd (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝐾   𝑓,𝑀   𝑓,𝑁   𝑆,𝑓   𝑓,𝑋   0 ,𝑓   · ,𝑓   𝜑,𝑓   𝑓,𝑉

Proof of Theorem ellspd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ellspd.f . . . . . 6 (𝜑𝐹:𝐼𝐵)
2 ffn 6735 . . . . . 6 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
3 fnima 6697 . . . . . 6 (𝐹 Fn 𝐼 → (𝐹𝐼) = ran 𝐹)
41, 2, 33syl 18 . . . . 5 (𝜑 → (𝐹𝐼) = ran 𝐹)
54fveq2d 6909 . . . 4 (𝜑 → (𝑁‘(𝐹𝐼)) = (𝑁‘ran 𝐹))
6 eqid 2736 . . . . . 6 (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹)))
76rnmpt 5967 . . . . 5 ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))}
8 eqid 2736 . . . . . 6 (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼)
9 eqid 2736 . . . . . 6 (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼))
10 ellspd.v . . . . . 6 𝐵 = (Base‘𝑀)
11 ellspd.t . . . . . 6 · = ( ·𝑠𝑀)
12 ellspd.m . . . . . 6 (𝜑𝑀 ∈ LMod)
13 ellspd.i . . . . . 6 (𝜑𝐼𝑉)
14 ellspd.s . . . . . . 7 𝑆 = (Scalar‘𝑀)
1514a1i 11 . . . . . 6 (𝜑𝑆 = (Scalar‘𝑀))
16 ellspd.n . . . . . 6 𝑁 = (LSpan‘𝑀)
178, 9, 10, 11, 6, 12, 13, 15, 1, 16frlmup3 21821 . . . . 5 (𝜑 → ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = (𝑁‘ran 𝐹))
187, 17eqtr3id 2790 . . . 4 (𝜑 → {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} = (𝑁‘ran 𝐹))
195, 18eqtr4d 2779 . . 3 (𝜑 → (𝑁‘(𝐹𝐼)) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))})
2019eleq2d 2826 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ 𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))}))
21 ovex 7465 . . . . . 6 (𝑀 Σg (𝑓f · 𝐹)) ∈ V
22 eleq1 2828 . . . . . 6 (𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → (𝑋 ∈ V ↔ (𝑀 Σg (𝑓f · 𝐹)) ∈ V))
2321, 22mpbiri 258 . . . . 5 (𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → 𝑋 ∈ V)
2423rexlimivw 3150 . . . 4 (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → 𝑋 ∈ V)
25 eqeq1 2740 . . . . 5 (𝑎 = 𝑋 → (𝑎 = (𝑀 Σg (𝑓f · 𝐹)) ↔ 𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
2625rexbidv 3178 . . . 4 (𝑎 = 𝑋 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
2724, 26elab3 3685 . . 3 (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)))
2814fvexi 6919 . . . . . . 7 𝑆 ∈ V
29 ellspd.k . . . . . . . 8 𝐾 = (Base‘𝑆)
30 ellspd.z . . . . . . . 8 0 = (0g𝑆)
31 eqid 2736 . . . . . . . 8 {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }
328, 29, 30, 31frlmbas 21776 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐼𝑉) → {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3328, 13, 32sylancr 587 . . . . . 6 (𝜑 → {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3433eqcomd 2742 . . . . 5 (𝜑 → (Base‘(𝑆 freeLMod 𝐼)) = {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 })
3534rexeqdv 3326 . . . 4 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
36 breq1 5145 . . . . 5 (𝑎 = 𝑓 → (𝑎 finSupp 0𝑓 finSupp 0 ))
3736rexrab 3701 . . . 4 (∃𝑓 ∈ {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
3835, 37bitrdi 287 . . 3 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
3927, 38bitrid 283 . 2 (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
4020, 39bitrd 279 1 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2713  wrex 3069  {crab 3435  Vcvv 3479   class class class wbr 5142  cmpt 5224  ran crn 5685  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  m cmap 8867   finSupp cfsupp 9402  Basecbs 17248  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17485   Σg cgsu 17486  LModclmod 20859  LSpanclspn 20970   freeLMod cfrlm 21767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-nzr 20514  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lmhm 21022  df-lbs 21075  df-sra 21173  df-rgmod 21174  df-dsmm 21753  df-frlm 21768  df-uvc 21804
This theorem is referenced by:  elfilspd  21824  islindf4  21859  ellspds  33397  ply1degltdimlem  33674  fedgmul  33683
  Copyright terms: Public domain W3C validator