Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ellspd | Structured version Visualization version GIF version |
Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.) |
Ref | Expression |
---|---|
ellspd.n | ⊢ 𝑁 = (LSpan‘𝑀) |
ellspd.v | ⊢ 𝐵 = (Base‘𝑀) |
ellspd.k | ⊢ 𝐾 = (Base‘𝑆) |
ellspd.s | ⊢ 𝑆 = (Scalar‘𝑀) |
ellspd.z | ⊢ 0 = (0g‘𝑆) |
ellspd.t | ⊢ · = ( ·𝑠 ‘𝑀) |
ellspd.f | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
ellspd.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
ellspd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
Ref | Expression |
---|---|
ellspd | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
2 | ffn 6656 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝐵 → 𝐹 Fn 𝐼) | |
3 | fnima 6619 | . . . . . 6 ⊢ (𝐹 Fn 𝐼 → (𝐹 “ 𝐼) = ran 𝐹) | |
4 | 1, 2, 3 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐼) = ran 𝐹) |
5 | 4 | fveq2d 6834 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝐹 “ 𝐼)) = (𝑁‘ran 𝐹)) |
6 | eqid 2737 | . . . . . 6 ⊢ (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) = (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) | |
7 | 6 | rnmpt 5901 | . . . . 5 ⊢ ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} |
8 | eqid 2737 | . . . . . 6 ⊢ (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼) | |
9 | eqid 2737 | . . . . . 6 ⊢ (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼)) | |
10 | ellspd.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
11 | ellspd.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑀) | |
12 | ellspd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
13 | ellspd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
14 | ellspd.s | . . . . . . 7 ⊢ 𝑆 = (Scalar‘𝑀) | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (Scalar‘𝑀)) |
16 | ellspd.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑀) | |
17 | 8, 9, 10, 11, 6, 12, 13, 15, 1, 16 | frlmup3 21113 | . . . . 5 ⊢ (𝜑 → ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) = (𝑁‘ran 𝐹)) |
18 | 7, 17 | eqtr3id 2791 | . . . 4 ⊢ (𝜑 → {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} = (𝑁‘ran 𝐹)) |
19 | 5, 18 | eqtr4d 2780 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐹 “ 𝐼)) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))}) |
20 | 19 | eleq2d 2823 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ 𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))})) |
21 | ovex 7375 | . . . . . 6 ⊢ (𝑀 Σg (𝑓 ∘f · 𝐹)) ∈ V | |
22 | eleq1 2825 | . . . . . 6 ⊢ (𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) → (𝑋 ∈ V ↔ (𝑀 Σg (𝑓 ∘f · 𝐹)) ∈ V)) | |
23 | 21, 22 | mpbiri 258 | . . . . 5 ⊢ (𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) → 𝑋 ∈ V) |
24 | 23 | rexlimivw 3145 | . . . 4 ⊢ (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) → 𝑋 ∈ V) |
25 | eqeq1 2741 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) | |
26 | 25 | rexbidv 3172 | . . . 4 ⊢ (𝑎 = 𝑋 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
27 | 24, 26 | elab3 3631 | . . 3 ⊢ (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))) |
28 | 14 | fvexi 6844 | . . . . . . 7 ⊢ 𝑆 ∈ V |
29 | ellspd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑆) | |
30 | ellspd.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑆) | |
31 | eqid 2737 | . . . . . . . 8 ⊢ {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } = {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } | |
32 | 8, 29, 30, 31 | frlmbas 21068 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝐼 ∈ 𝑉) → {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼))) |
33 | 28, 13, 32 | sylancr 588 | . . . . . 6 ⊢ (𝜑 → {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼))) |
34 | 33 | eqcomd 2743 | . . . . 5 ⊢ (𝜑 → (Base‘(𝑆 freeLMod 𝐼)) = {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 }) |
35 | 34 | rexeqdv 3311 | . . . 4 ⊢ (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
36 | breq1 5100 | . . . . 5 ⊢ (𝑎 = 𝑓 → (𝑎 finSupp 0 ↔ 𝑓 finSupp 0 )) | |
37 | 36 | rexrab 3647 | . . . 4 ⊢ (∃𝑓 ∈ {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
38 | 35, 37 | bitrdi 287 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
39 | 27, 38 | bitrid 283 | . 2 ⊢ (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
40 | 20, 39 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {cab 2714 ∃wrex 3071 {crab 3404 Vcvv 3442 class class class wbr 5097 ↦ cmpt 5180 ran crn 5626 “ cima 5628 Fn wfn 6479 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ∘f cof 7598 ↑m cmap 8691 finSupp cfsupp 9231 Basecbs 17010 Scalarcsca 17063 ·𝑠 cvsca 17064 0gc0g 17248 Σg cgsu 17249 LModclmod 20229 LSpanclspn 20339 freeLMod cfrlm 21059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-supp 8053 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-ixp 8762 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-fsupp 9232 df-sup 9304 df-oi 9372 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-9 12149 df-n0 12340 df-z 12426 df-dec 12544 df-uz 12689 df-fz 13346 df-fzo 13489 df-seq 13828 df-hash 14151 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-ip 17078 df-tset 17079 df-ple 17080 df-ds 17082 df-hom 17084 df-cco 17085 df-0g 17250 df-gsum 17251 df-prds 17256 df-pws 17258 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-ghm 18929 df-cntz 19020 df-cmn 19484 df-abl 19485 df-mgp 19816 df-ur 19833 df-ring 19880 df-subrg 20127 df-lmod 20231 df-lss 20300 df-lsp 20340 df-lmhm 20390 df-lbs 20443 df-sra 20540 df-rgmod 20541 df-nzr 20635 df-dsmm 21045 df-frlm 21060 df-uvc 21096 |
This theorem is referenced by: elfilspd 21116 islindf4 21151 ellspds 31859 fedgmul 32008 |
Copyright terms: Public domain | W3C validator |