| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspd | Structured version Visualization version GIF version | ||
| Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.) |
| Ref | Expression |
|---|---|
| ellspd.n | ⊢ 𝑁 = (LSpan‘𝑀) |
| ellspd.v | ⊢ 𝐵 = (Base‘𝑀) |
| ellspd.k | ⊢ 𝐾 = (Base‘𝑆) |
| ellspd.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| ellspd.z | ⊢ 0 = (0g‘𝑆) |
| ellspd.t | ⊢ · = ( ·𝑠 ‘𝑀) |
| ellspd.f | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
| ellspd.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| ellspd.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ellspd | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
| 2 | ffn 6656 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝐵 → 𝐹 Fn 𝐼) | |
| 3 | fnima 6616 | . . . . . 6 ⊢ (𝐹 Fn 𝐼 → (𝐹 “ 𝐼) = ran 𝐹) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐼) = ran 𝐹) |
| 5 | 4 | fveq2d 6832 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝐹 “ 𝐼)) = (𝑁‘ran 𝐹)) |
| 6 | eqid 2733 | . . . . . 6 ⊢ (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) = (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) | |
| 7 | 6 | rnmpt 5901 | . . . . 5 ⊢ ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} |
| 8 | eqid 2733 | . . . . . 6 ⊢ (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼) | |
| 9 | eqid 2733 | . . . . . 6 ⊢ (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼)) | |
| 10 | ellspd.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 11 | ellspd.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑀) | |
| 12 | ellspd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 13 | ellspd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 14 | ellspd.s | . . . . . . 7 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (Scalar‘𝑀)) |
| 16 | ellspd.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑀) | |
| 17 | 8, 9, 10, 11, 6, 12, 13, 15, 1, 16 | frlmup3 21739 | . . . . 5 ⊢ (𝜑 → ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘f · 𝐹))) = (𝑁‘ran 𝐹)) |
| 18 | 7, 17 | eqtr3id 2782 | . . . 4 ⊢ (𝜑 → {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} = (𝑁‘ran 𝐹)) |
| 19 | 5, 18 | eqtr4d 2771 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐹 “ 𝐼)) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))}) |
| 20 | 19 | eleq2d 2819 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ 𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))})) |
| 21 | ovex 7385 | . . . . . 6 ⊢ (𝑀 Σg (𝑓 ∘f · 𝐹)) ∈ V | |
| 22 | eleq1 2821 | . . . . . 6 ⊢ (𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) → (𝑋 ∈ V ↔ (𝑀 Σg (𝑓 ∘f · 𝐹)) ∈ V)) | |
| 23 | 21, 22 | mpbiri 258 | . . . . 5 ⊢ (𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) → 𝑋 ∈ V) |
| 24 | 23 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) → 𝑋 ∈ V) |
| 25 | eqeq1 2737 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) | |
| 26 | 25 | rexbidv 3157 | . . . 4 ⊢ (𝑎 = 𝑋 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
| 27 | 24, 26 | elab3 3638 | . . 3 ⊢ (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))) |
| 28 | 14 | fvexi 6842 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 29 | ellspd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑆) | |
| 30 | ellspd.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑆) | |
| 31 | eqid 2733 | . . . . . . . 8 ⊢ {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } = {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } | |
| 32 | 8, 29, 30, 31 | frlmbas 21694 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝐼 ∈ 𝑉) → {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼))) |
| 33 | 28, 13, 32 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼))) |
| 34 | 33 | eqcomd 2739 | . . . . 5 ⊢ (𝜑 → (Base‘(𝑆 freeLMod 𝐼)) = {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 }) |
| 35 | 34 | rexeqdv 3294 | . . . 4 ⊢ (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
| 36 | breq1 5096 | . . . . 5 ⊢ (𝑎 = 𝑓 → (𝑎 finSupp 0 ↔ 𝑓 finSupp 0 )) | |
| 37 | 36 | rexrab 3651 | . . . 4 ⊢ (∃𝑓 ∈ {𝑎 ∈ (𝐾 ↑m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)))) |
| 38 | 35, 37 | bitrdi 287 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
| 39 | 27, 38 | bitrid 283 | . 2 ⊢ (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘f · 𝐹))} ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
| 40 | 20, 39 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑m 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘f · 𝐹))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 {crab 3396 Vcvv 3437 class class class wbr 5093 ↦ cmpt 5174 ran crn 5620 “ cima 5622 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∘f cof 7614 ↑m cmap 8756 finSupp cfsupp 9252 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 0gc0g 17345 Σg cgsu 17346 LModclmod 20795 LSpanclspn 20906 freeLMod cfrlm 21685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-nzr 20430 df-subrg 20487 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lmhm 20958 df-lbs 21011 df-sra 21109 df-rgmod 21110 df-dsmm 21671 df-frlm 21686 df-uvc 21722 |
| This theorem is referenced by: elfilspd 21742 islindf4 21777 ellspds 33340 ply1degltdimlem 33656 fedgmul 33665 |
| Copyright terms: Public domain | W3C validator |