MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspd Structured version   Visualization version   GIF version

Theorem ellspd 21115
Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
ellspd.n 𝑁 = (LSpan‘𝑀)
ellspd.v 𝐵 = (Base‘𝑀)
ellspd.k 𝐾 = (Base‘𝑆)
ellspd.s 𝑆 = (Scalar‘𝑀)
ellspd.z 0 = (0g𝑆)
ellspd.t · = ( ·𝑠𝑀)
ellspd.f (𝜑𝐹:𝐼𝐵)
ellspd.m (𝜑𝑀 ∈ LMod)
ellspd.i (𝜑𝐼𝑉)
Assertion
Ref Expression
ellspd (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝐾   𝑓,𝑀   𝑓,𝑁   𝑆,𝑓   𝑓,𝑋   0 ,𝑓   · ,𝑓   𝜑,𝑓   𝑓,𝑉

Proof of Theorem ellspd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ellspd.f . . . . . 6 (𝜑𝐹:𝐼𝐵)
2 ffn 6656 . . . . . 6 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
3 fnima 6619 . . . . . 6 (𝐹 Fn 𝐼 → (𝐹𝐼) = ran 𝐹)
41, 2, 33syl 18 . . . . 5 (𝜑 → (𝐹𝐼) = ran 𝐹)
54fveq2d 6834 . . . 4 (𝜑 → (𝑁‘(𝐹𝐼)) = (𝑁‘ran 𝐹))
6 eqid 2737 . . . . . 6 (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹)))
76rnmpt 5901 . . . . 5 ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))}
8 eqid 2737 . . . . . 6 (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼)
9 eqid 2737 . . . . . 6 (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼))
10 ellspd.v . . . . . 6 𝐵 = (Base‘𝑀)
11 ellspd.t . . . . . 6 · = ( ·𝑠𝑀)
12 ellspd.m . . . . . 6 (𝜑𝑀 ∈ LMod)
13 ellspd.i . . . . . 6 (𝜑𝐼𝑉)
14 ellspd.s . . . . . . 7 𝑆 = (Scalar‘𝑀)
1514a1i 11 . . . . . 6 (𝜑𝑆 = (Scalar‘𝑀))
16 ellspd.n . . . . . 6 𝑁 = (LSpan‘𝑀)
178, 9, 10, 11, 6, 12, 13, 15, 1, 16frlmup3 21113 . . . . 5 (𝜑 → ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = (𝑁‘ran 𝐹))
187, 17eqtr3id 2791 . . . 4 (𝜑 → {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} = (𝑁‘ran 𝐹))
195, 18eqtr4d 2780 . . 3 (𝜑 → (𝑁‘(𝐹𝐼)) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))})
2019eleq2d 2823 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ 𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))}))
21 ovex 7375 . . . . . 6 (𝑀 Σg (𝑓f · 𝐹)) ∈ V
22 eleq1 2825 . . . . . 6 (𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → (𝑋 ∈ V ↔ (𝑀 Σg (𝑓f · 𝐹)) ∈ V))
2321, 22mpbiri 258 . . . . 5 (𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → 𝑋 ∈ V)
2423rexlimivw 3145 . . . 4 (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → 𝑋 ∈ V)
25 eqeq1 2741 . . . . 5 (𝑎 = 𝑋 → (𝑎 = (𝑀 Σg (𝑓f · 𝐹)) ↔ 𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
2625rexbidv 3172 . . . 4 (𝑎 = 𝑋 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
2724, 26elab3 3631 . . 3 (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)))
2814fvexi 6844 . . . . . . 7 𝑆 ∈ V
29 ellspd.k . . . . . . . 8 𝐾 = (Base‘𝑆)
30 ellspd.z . . . . . . . 8 0 = (0g𝑆)
31 eqid 2737 . . . . . . . 8 {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }
328, 29, 30, 31frlmbas 21068 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐼𝑉) → {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3328, 13, 32sylancr 588 . . . . . 6 (𝜑 → {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3433eqcomd 2743 . . . . 5 (𝜑 → (Base‘(𝑆 freeLMod 𝐼)) = {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 })
3534rexeqdv 3311 . . . 4 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
36 breq1 5100 . . . . 5 (𝑎 = 𝑓 → (𝑎 finSupp 0𝑓 finSupp 0 ))
3736rexrab 3647 . . . 4 (∃𝑓 ∈ {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
3835, 37bitrdi 287 . . 3 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
3927, 38bitrid 283 . 2 (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
4020, 39bitrd 279 1 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  {cab 2714  wrex 3071  {crab 3404  Vcvv 3442   class class class wbr 5097  cmpt 5180  ran crn 5626  cima 5628   Fn wfn 6479  wf 6480  cfv 6484  (class class class)co 7342  f cof 7598  m cmap 8691   finSupp cfsupp 9231  Basecbs 17010  Scalarcsca 17063   ·𝑠 cvsca 17064  0gc0g 17248   Σg cgsu 17249  LModclmod 20229  LSpanclspn 20339   freeLMod cfrlm 21059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-iin 4949  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-om 7786  df-1st 7904  df-2nd 7905  df-supp 8053  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-ixp 8762  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-fsupp 9232  df-sup 9304  df-oi 9372  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-9 12149  df-n0 12340  df-z 12426  df-dec 12544  df-uz 12689  df-fz 13346  df-fzo 13489  df-seq 13828  df-hash 14151  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-ip 17078  df-tset 17079  df-ple 17080  df-ds 17082  df-hom 17084  df-cco 17085  df-0g 17250  df-gsum 17251  df-prds 17256  df-pws 17258  df-mre 17393  df-mrc 17394  df-acs 17396  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-mhm 18528  df-submnd 18529  df-grp 18677  df-minusg 18678  df-sbg 18679  df-mulg 18798  df-subg 18849  df-ghm 18929  df-cntz 19020  df-cmn 19484  df-abl 19485  df-mgp 19816  df-ur 19833  df-ring 19880  df-subrg 20127  df-lmod 20231  df-lss 20300  df-lsp 20340  df-lmhm 20390  df-lbs 20443  df-sra 20540  df-rgmod 20541  df-nzr 20635  df-dsmm 21045  df-frlm 21060  df-uvc 21096
This theorem is referenced by:  elfilspd  21116  islindf4  21151  ellspds  31859  fedgmul  32008
  Copyright terms: Public domain W3C validator