MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspd Structured version   Visualization version   GIF version

Theorem ellspd 21845
Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
ellspd.n 𝑁 = (LSpan‘𝑀)
ellspd.v 𝐵 = (Base‘𝑀)
ellspd.k 𝐾 = (Base‘𝑆)
ellspd.s 𝑆 = (Scalar‘𝑀)
ellspd.z 0 = (0g𝑆)
ellspd.t · = ( ·𝑠𝑀)
ellspd.f (𝜑𝐹:𝐼𝐵)
ellspd.m (𝜑𝑀 ∈ LMod)
ellspd.i (𝜑𝐼𝑉)
Assertion
Ref Expression
ellspd (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝐾   𝑓,𝑀   𝑓,𝑁   𝑆,𝑓   𝑓,𝑋   0 ,𝑓   · ,𝑓   𝜑,𝑓   𝑓,𝑉

Proof of Theorem ellspd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ellspd.f . . . . . 6 (𝜑𝐹:𝐼𝐵)
2 ffn 6747 . . . . . 6 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
3 fnima 6710 . . . . . 6 (𝐹 Fn 𝐼 → (𝐹𝐼) = ran 𝐹)
41, 2, 33syl 18 . . . . 5 (𝜑 → (𝐹𝐼) = ran 𝐹)
54fveq2d 6924 . . . 4 (𝜑 → (𝑁‘(𝐹𝐼)) = (𝑁‘ran 𝐹))
6 eqid 2740 . . . . . 6 (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹)))
76rnmpt 5980 . . . . 5 ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))}
8 eqid 2740 . . . . . 6 (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼)
9 eqid 2740 . . . . . 6 (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼))
10 ellspd.v . . . . . 6 𝐵 = (Base‘𝑀)
11 ellspd.t . . . . . 6 · = ( ·𝑠𝑀)
12 ellspd.m . . . . . 6 (𝜑𝑀 ∈ LMod)
13 ellspd.i . . . . . 6 (𝜑𝐼𝑉)
14 ellspd.s . . . . . . 7 𝑆 = (Scalar‘𝑀)
1514a1i 11 . . . . . 6 (𝜑𝑆 = (Scalar‘𝑀))
16 ellspd.n . . . . . 6 𝑁 = (LSpan‘𝑀)
178, 9, 10, 11, 6, 12, 13, 15, 1, 16frlmup3 21843 . . . . 5 (𝜑 → ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = (𝑁‘ran 𝐹))
187, 17eqtr3id 2794 . . . 4 (𝜑 → {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} = (𝑁‘ran 𝐹))
195, 18eqtr4d 2783 . . 3 (𝜑 → (𝑁‘(𝐹𝐼)) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))})
2019eleq2d 2830 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ 𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))}))
21 ovex 7481 . . . . . 6 (𝑀 Σg (𝑓f · 𝐹)) ∈ V
22 eleq1 2832 . . . . . 6 (𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → (𝑋 ∈ V ↔ (𝑀 Σg (𝑓f · 𝐹)) ∈ V))
2321, 22mpbiri 258 . . . . 5 (𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → 𝑋 ∈ V)
2423rexlimivw 3157 . . . 4 (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → 𝑋 ∈ V)
25 eqeq1 2744 . . . . 5 (𝑎 = 𝑋 → (𝑎 = (𝑀 Σg (𝑓f · 𝐹)) ↔ 𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
2625rexbidv 3185 . . . 4 (𝑎 = 𝑋 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
2724, 26elab3 3702 . . 3 (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)))
2814fvexi 6934 . . . . . . 7 𝑆 ∈ V
29 ellspd.k . . . . . . . 8 𝐾 = (Base‘𝑆)
30 ellspd.z . . . . . . . 8 0 = (0g𝑆)
31 eqid 2740 . . . . . . . 8 {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }
328, 29, 30, 31frlmbas 21798 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐼𝑉) → {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3328, 13, 32sylancr 586 . . . . . 6 (𝜑 → {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3433eqcomd 2746 . . . . 5 (𝜑 → (Base‘(𝑆 freeLMod 𝐼)) = {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 })
3534rexeqdv 3335 . . . 4 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
36 breq1 5169 . . . . 5 (𝑎 = 𝑓 → (𝑎 finSupp 0𝑓 finSupp 0 ))
3736rexrab 3718 . . . 4 (∃𝑓 ∈ {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
3835, 37bitrdi 287 . . 3 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
3927, 38bitrid 283 . 2 (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
4020, 39bitrd 279 1 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  {crab 3443  Vcvv 3488   class class class wbr 5166  cmpt 5249  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884   finSupp cfsupp 9431  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  LModclmod 20880  LSpanclspn 20992   freeLMod cfrlm 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-nzr 20539  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lbs 21097  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-uvc 21826
This theorem is referenced by:  elfilspd  21846  islindf4  21881  ellspds  33361  ply1degltdimlem  33635  fedgmul  33644
  Copyright terms: Public domain W3C validator