MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspd Structured version   Visualization version   GIF version

Theorem ellspd 21767
Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) (Revised by AV, 11-Apr-2024.)
Hypotheses
Ref Expression
ellspd.n 𝑁 = (LSpan‘𝑀)
ellspd.v 𝐵 = (Base‘𝑀)
ellspd.k 𝐾 = (Base‘𝑆)
ellspd.s 𝑆 = (Scalar‘𝑀)
ellspd.z 0 = (0g𝑆)
ellspd.t · = ( ·𝑠𝑀)
ellspd.f (𝜑𝐹:𝐼𝐵)
ellspd.m (𝜑𝑀 ∈ LMod)
ellspd.i (𝜑𝐼𝑉)
Assertion
Ref Expression
ellspd (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹   𝑓,𝐼   𝑓,𝐾   𝑓,𝑀   𝑓,𝑁   𝑆,𝑓   𝑓,𝑋   0 ,𝑓   · ,𝑓   𝜑,𝑓   𝑓,𝑉

Proof of Theorem ellspd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 ellspd.f . . . . . 6 (𝜑𝐹:𝐼𝐵)
2 ffn 6711 . . . . . 6 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
3 fnima 6673 . . . . . 6 (𝐹 Fn 𝐼 → (𝐹𝐼) = ran 𝐹)
41, 2, 33syl 18 . . . . 5 (𝜑 → (𝐹𝐼) = ran 𝐹)
54fveq2d 6885 . . . 4 (𝜑 → (𝑁‘(𝐹𝐼)) = (𝑁‘ran 𝐹))
6 eqid 2736 . . . . . 6 (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹)))
76rnmpt 5942 . . . . 5 ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))}
8 eqid 2736 . . . . . 6 (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼)
9 eqid 2736 . . . . . 6 (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼))
10 ellspd.v . . . . . 6 𝐵 = (Base‘𝑀)
11 ellspd.t . . . . . 6 · = ( ·𝑠𝑀)
12 ellspd.m . . . . . 6 (𝜑𝑀 ∈ LMod)
13 ellspd.i . . . . . 6 (𝜑𝐼𝑉)
14 ellspd.s . . . . . . 7 𝑆 = (Scalar‘𝑀)
1514a1i 11 . . . . . 6 (𝜑𝑆 = (Scalar‘𝑀))
16 ellspd.n . . . . . 6 𝑁 = (LSpan‘𝑀)
178, 9, 10, 11, 6, 12, 13, 15, 1, 16frlmup3 21765 . . . . 5 (𝜑 → ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓f · 𝐹))) = (𝑁‘ran 𝐹))
187, 17eqtr3id 2785 . . . 4 (𝜑 → {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} = (𝑁‘ran 𝐹))
195, 18eqtr4d 2774 . . 3 (𝜑 → (𝑁‘(𝐹𝐼)) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))})
2019eleq2d 2821 . 2 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ 𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))}))
21 ovex 7443 . . . . . 6 (𝑀 Σg (𝑓f · 𝐹)) ∈ V
22 eleq1 2823 . . . . . 6 (𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → (𝑋 ∈ V ↔ (𝑀 Σg (𝑓f · 𝐹)) ∈ V))
2321, 22mpbiri 258 . . . . 5 (𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → 𝑋 ∈ V)
2423rexlimivw 3138 . . . 4 (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) → 𝑋 ∈ V)
25 eqeq1 2740 . . . . 5 (𝑎 = 𝑋 → (𝑎 = (𝑀 Σg (𝑓f · 𝐹)) ↔ 𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
2625rexbidv 3165 . . . 4 (𝑎 = 𝑋 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
2724, 26elab3 3670 . . 3 (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)))
2814fvexi 6895 . . . . . . 7 𝑆 ∈ V
29 ellspd.k . . . . . . . 8 𝐾 = (Base‘𝑆)
30 ellspd.z . . . . . . . 8 0 = (0g𝑆)
31 eqid 2736 . . . . . . . 8 {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }
328, 29, 30, 31frlmbas 21720 . . . . . . 7 ((𝑆 ∈ V ∧ 𝐼𝑉) → {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3328, 13, 32sylancr 587 . . . . . 6 (𝜑 → {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼)))
3433eqcomd 2742 . . . . 5 (𝜑 → (Base‘(𝑆 freeLMod 𝐼)) = {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 })
3534rexeqdv 3310 . . . 4 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
36 breq1 5127 . . . . 5 (𝑎 = 𝑓 → (𝑎 finSupp 0𝑓 finSupp 0 ))
3736rexrab 3684 . . . 4 (∃𝑓 ∈ {𝑎 ∈ (𝐾m 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹))))
3835, 37bitrdi 287 . . 3 (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓f · 𝐹)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
3927, 38bitrid 283 . 2 (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓f · 𝐹))} ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
4020, 39bitrd 279 1 (𝜑 → (𝑋 ∈ (𝑁‘(𝐹𝐼)) ↔ ∃𝑓 ∈ (𝐾m 𝐼)(𝑓 finSupp 0𝑋 = (𝑀 Σg (𝑓f · 𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  {crab 3420  Vcvv 3464   class class class wbr 5124  cmpt 5206  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  m cmap 8845   finSupp cfsupp 9378  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458   Σg cgsu 17459  LModclmod 20822  LSpanclspn 20933   freeLMod cfrlm 21711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-nzr 20478  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lbs 21038  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-uvc 21748
This theorem is referenced by:  elfilspd  21768  islindf4  21803  ellspds  33388  ply1degltdimlem  33667  fedgmul  33676
  Copyright terms: Public domain W3C validator