| Step | Hyp | Ref
| Expression |
| 1 | | simprr 773 |
. . . . 5
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑓 ∈ (𝑆 Cn 𝑇) ∧ 𝑔 ∈ (𝑅 Cn 𝑆))) → 𝑔 ∈ (𝑅 Cn 𝑆)) |
| 2 | | simprl 771 |
. . . . 5
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑓 ∈ (𝑆 Cn 𝑇) ∧ 𝑔 ∈ (𝑅 Cn 𝑆))) → 𝑓 ∈ (𝑆 Cn 𝑇)) |
| 3 | | cnco 23274 |
. . . . 5
⊢ ((𝑔 ∈ (𝑅 Cn 𝑆) ∧ 𝑓 ∈ (𝑆 Cn 𝑇)) → (𝑓 ∘ 𝑔) ∈ (𝑅 Cn 𝑇)) |
| 4 | 1, 2, 3 | syl2anc 584 |
. . . 4
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑓 ∈ (𝑆 Cn 𝑇) ∧ 𝑔 ∈ (𝑅 Cn 𝑆))) → (𝑓 ∘ 𝑔) ∈ (𝑅 Cn 𝑇)) |
| 5 | 4 | ralrimivva 3202 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
∀𝑓 ∈ (𝑆 Cn 𝑇)∀𝑔 ∈ (𝑅 Cn 𝑆)(𝑓 ∘ 𝑔) ∈ (𝑅 Cn 𝑇)) |
| 6 | | xkococn.1 |
. . . 4
⊢ 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓 ∘ 𝑔)) |
| 7 | 6 | fmpo 8093 |
. . 3
⊢
(∀𝑓 ∈
(𝑆 Cn 𝑇)∀𝑔 ∈ (𝑅 Cn 𝑆)(𝑓 ∘ 𝑔) ∈ (𝑅 Cn 𝑇) ↔ 𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇)) |
| 8 | 5, 7 | sylib 218 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇)) |
| 9 | | eqid 2737 |
. . . . . . 7
⊢ (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) |
| 10 | 9 | rnmpo 7566 |
. . . . . 6
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}∃𝑣 ∈
𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} |
| 11 | 10 | eleq2i 2833 |
. . . . 5
⊢ (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}∃𝑣 ∈
𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}}) |
| 12 | | abid 2718 |
. . . . 5
⊢ (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}∃𝑣 ∈
𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}} ↔ ∃𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}∃𝑣 ∈
𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) |
| 13 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑦 = 𝑘 → (𝑅 ↾t 𝑦) = (𝑅 ↾t 𝑘)) |
| 14 | 13 | eleq1d 2826 |
. . . . . 6
⊢ (𝑦 = 𝑘 → ((𝑅 ↾t 𝑦) ∈ Comp ↔ (𝑅 ↾t 𝑘) ∈ Comp)) |
| 15 | 14 | rexrab 3702 |
. . . . 5
⊢
(∃𝑘 ∈
{𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}∃𝑣 ∈
𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 ∪ 𝑅((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
| 16 | 11, 12, 15 | 3bitri 297 |
. . . 4
⊢ (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 ∪ 𝑅((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
| 17 | 8 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) → 𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇)) |
| 18 | | ffn 6736 |
. . . . . . . . . . . . 13
⊢ (𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇) → 𝐹 Fn ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))) |
| 19 | | elpreima 7078 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)) → (𝑦 ∈ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ↔ (𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)) ∧ (𝐹‘𝑦) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}))) |
| 20 | 17, 18, 19 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) → (𝑦 ∈ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ↔ (𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)) ∧ (𝐹‘𝑦) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}))) |
| 21 | | coeq1 5868 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 = 𝑎 → (𝑓 ∘ 𝑔) = (𝑎 ∘ 𝑔)) |
| 22 | | coeq2 5869 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑔 = 𝑏 → (𝑎 ∘ 𝑔) = (𝑎 ∘ 𝑏)) |
| 23 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑎 ∈ V |
| 24 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑏 ∈ V |
| 25 | 23, 24 | coex 7952 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∘ 𝑏) ∈ V |
| 26 | 21, 22, 6, 25 | ovmpo 7593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) → (𝑎𝐹𝑏) = (𝑎 ∘ 𝑏)) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → (𝑎𝐹𝑏) = (𝑎 ∘ 𝑏)) |
| 28 | 27 | eleq1d 2826 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → ((𝑎𝐹𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ (𝑎 ∘ 𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
| 29 | | imaeq1 6073 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ = (𝑎 ∘ 𝑏) → (ℎ “ 𝑘) = ((𝑎 ∘ 𝑏) “ 𝑘)) |
| 30 | 29 | sseq1d 4015 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℎ = (𝑎 ∘ 𝑏) → ((ℎ “ 𝑘) ⊆ 𝑣 ↔ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) |
| 31 | 30 | elrab 3692 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∘ 𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ ((𝑎 ∘ 𝑏) ∈ (𝑅 Cn 𝑇) ∧ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) |
| 32 | 31 | simprbi 496 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 ∘ 𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣) |
| 33 | | simp2 1138 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
𝑆 ∈ 𝑛-Locally
Comp) |
| 34 | 33 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑆 ∈ 𝑛-Locally
Comp) |
| 35 | | elpwi 4607 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ 𝒫 ∪ 𝑅
→ 𝑘 ⊆ ∪ 𝑅) |
| 36 | 35 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) → 𝑘
⊆ ∪ 𝑅) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑘 ⊆ ∪ 𝑅) |
| 38 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) → (𝑅
↾t 𝑘)
∈ Comp) |
| 39 | 38 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) → (𝑅 ↾t 𝑘) ∈ Comp) |
| 40 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑣 ∈ 𝑇) |
| 41 | | simprll 779 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑎 ∈ (𝑆 Cn 𝑇)) |
| 42 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑏 ∈ (𝑅 Cn 𝑆)) |
| 43 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) → ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣) |
| 44 | 6, 34, 37, 39, 40, 41, 42, 43 | xkococnlem 23667 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣)) → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝑎, 𝑏〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}))) |
| 45 | 44 | expr 456 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → (((𝑎 ∘ 𝑏) “ 𝑘) ⊆ 𝑣 → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝑎, 𝑏〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 46 | 32, 45 | syl5 34 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → ((𝑎 ∘ 𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝑎, 𝑏〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 47 | 28, 46 | sylbid 240 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → ((𝑎𝐹𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝑎, 𝑏〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 48 | 47 | ralrimivva 3202 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) →
∀𝑎 ∈ (𝑆 Cn 𝑇)∀𝑏 ∈ (𝑅 Cn 𝑆)((𝑎𝐹𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝑎, 𝑏〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 49 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈𝑎, 𝑏〉 → (𝐹‘𝑦) = (𝐹‘〈𝑎, 𝑏〉)) |
| 50 | | df-ov 7434 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎𝐹𝑏) = (𝐹‘〈𝑎, 𝑏〉) |
| 51 | 49, 50 | eqtr4di 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈𝑎, 𝑏〉 → (𝐹‘𝑦) = (𝑎𝐹𝑏)) |
| 52 | 51 | eleq1d 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑎, 𝑏〉 → ((𝐹‘𝑦) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} ↔ (𝑎𝐹𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
| 53 | | eleq1 2829 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈𝑎, 𝑏〉 → (𝑦 ∈ 𝑧 ↔ 〈𝑎, 𝑏〉 ∈ 𝑧)) |
| 54 | 53 | anbi1d 631 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈𝑎, 𝑏〉 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) ↔ (〈𝑎, 𝑏〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 55 | 54 | rexbidv 3179 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈𝑎, 𝑏〉 → (∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) ↔ ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝑎, 𝑏〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 56 | 52, 55 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 〈𝑎, 𝑏〉 → (((𝐹‘𝑦) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}))) ↔ ((𝑎𝐹𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝑎, 𝑏〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}))))) |
| 57 | 56 | ralxp 5852 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))((𝐹‘𝑦) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}))) ↔ ∀𝑎 ∈ (𝑆 Cn 𝑇)∀𝑏 ∈ (𝑅 Cn 𝑆)((𝑎𝐹𝑏) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(〈𝑎, 𝑏〉 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 58 | 48, 57 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) →
∀𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))((𝐹‘𝑦) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 59 | 58 | r19.21bi 3251 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ Top
∧ 𝑆 ∈
𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) ∧ 𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))) → ((𝐹‘𝑦) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 60 | 59 | expimpd 453 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) → ((𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)) ∧ (𝐹‘𝑦) ∈ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 61 | 20, 60 | sylbid 240 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) → (𝑦 ∈ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → ∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 62 | 61 | ralrimiv 3145 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) →
∀𝑦 ∈ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}))) |
| 63 | | nllytop 23481 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 ∈ 𝑛-Locally Comp
→ 𝑆 ∈
Top) |
| 64 | 63 | 3ad2ant2 1135 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
𝑆 ∈
Top) |
| 65 | | simp3 1139 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
𝑇 ∈
Top) |
| 66 | | xkotop 23596 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ↑ko 𝑆) ∈ Top) |
| 67 | 64, 65, 66 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
(𝑇 ↑ko
𝑆) ∈
Top) |
| 68 | | simp1 1137 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
𝑅 ∈
Top) |
| 69 | | xkotop 23596 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ Top) |
| 70 | 68, 64, 69 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
(𝑆 ↑ko
𝑅) ∈
Top) |
| 71 | | txtop 23577 |
. . . . . . . . . . . . 13
⊢ (((𝑇 ↑ko 𝑆) ∈ Top ∧ (𝑆 ↑ko 𝑅) ∈ Top) → ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) ∈ Top) |
| 72 | 67, 70, 71 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
((𝑇 ↑ko
𝑆) ×t
(𝑆 ↑ko
𝑅)) ∈
Top) |
| 73 | 72 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) → ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) ∈ Top) |
| 74 | | eltop2 22982 |
. . . . . . . . . . 11
⊢ (((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) ∈ Top → ((◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) ↔ ∀𝑦 ∈ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) → ((◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) ↔ ∀𝑦 ∈ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})∃𝑧 ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))(𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 76 | 62, 75 | mpbird 257 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) → (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))) |
| 77 | | imaeq2 6074 |
. . . . . . . . . 10
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑥) = (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})) |
| 78 | 77 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → ((◡𝐹 “ 𝑥) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) ↔ (◡𝐹 “ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)))) |
| 79 | 76, 78 | syl5ibrcom 247 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) ∧ 𝑣
∈ 𝑇) → (𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑥) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)))) |
| 80 | 79 | rexlimdva 3155 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
(𝑘 ∈ 𝒫 ∪ 𝑅
∧ (𝑅
↾t 𝑘)
∈ Comp)) → (∃𝑣 ∈ 𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑥) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)))) |
| 81 | 80 | anassrs 467 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
𝑘 ∈ 𝒫 ∪ 𝑅)
∧ (𝑅
↾t 𝑘)
∈ Comp) → (∃𝑣 ∈ 𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣} → (◡𝐹 “ 𝑥) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)))) |
| 82 | 81 | expimpd 453 |
. . . . 5
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) ∧
𝑘 ∈ 𝒫 ∪ 𝑅)
→ (((𝑅
↾t 𝑘)
∈ Comp ∧ ∃𝑣
∈ 𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡𝐹 “ 𝑥) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)))) |
| 83 | 82 | rexlimdva 3155 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
(∃𝑘 ∈ 𝒫
∪ 𝑅((𝑅 ↾t 𝑘) ∈ Comp ∧ ∃𝑣 ∈ 𝑇 𝑥 = {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡𝐹 “ 𝑥) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)))) |
| 84 | 16, 83 | biimtrid 242 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
(𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) → (◡𝐹 “ 𝑥) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)))) |
| 85 | 84 | ralrimiv 3145 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})(◡𝐹 “ 𝑥) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))) |
| 86 | | eqid 2737 |
. . . . . 6
⊢ (𝑇 ↑ko 𝑆) = (𝑇 ↑ko 𝑆) |
| 87 | 86 | xkotopon 23608 |
. . . . 5
⊢ ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ↑ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇))) |
| 88 | 64, 65, 87 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
(𝑇 ↑ko
𝑆) ∈
(TopOn‘(𝑆 Cn 𝑇))) |
| 89 | | eqid 2737 |
. . . . . 6
⊢ (𝑆 ↑ko 𝑅) = (𝑆 ↑ko 𝑅) |
| 90 | 89 | xkotopon 23608 |
. . . . 5
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) |
| 91 | 68, 64, 90 | syl2anc 584 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
(𝑆 ↑ko
𝑅) ∈
(TopOn‘(𝑅 Cn 𝑆))) |
| 92 | | txtopon 23599 |
. . . 4
⊢ (((𝑇 ↑ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)) ∧ (𝑆 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) → ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) ∈ (TopOn‘((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)))) |
| 93 | 88, 91, 92 | syl2anc 584 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
((𝑇 ↑ko
𝑆) ×t
(𝑆 ↑ko
𝑅)) ∈
(TopOn‘((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)))) |
| 94 | | ovex 7464 |
. . . . . 6
⊢ (𝑅 Cn 𝑇) ∈ V |
| 95 | 94 | pwex 5380 |
. . . . 5
⊢ 𝒫
(𝑅 Cn 𝑇) ∈ V |
| 96 | | eqid 2737 |
. . . . . . 7
⊢ ∪ 𝑅 =
∪ 𝑅 |
| 97 | | eqid 2737 |
. . . . . . 7
⊢ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} = {𝑦 ∈
𝒫 ∪ 𝑅 ∣ (𝑅 ↾t 𝑦) ∈ Comp} |
| 98 | 96, 97, 9 | xkotf 23593 |
. . . . . 6
⊢ (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) |
| 99 | | frn 6743 |
. . . . . 6
⊢ ((𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)) |
| 100 | 98, 99 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇) |
| 101 | 95, 100 | ssexi 5322 |
. . . 4
⊢ ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ V |
| 102 | 101 | a1i 11 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣}) ∈ V) |
| 103 | 96, 97, 9 | xkoval 23595 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ↑ko 𝑅) = (topGen‘(fi‘ran
(𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 104 | 103 | 3adant2 1132 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
(𝑇 ↑ko
𝑅) =
(topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})))) |
| 105 | | eqid 2737 |
. . . . 5
⊢ (𝑇 ↑ko 𝑅) = (𝑇 ↑ko 𝑅) |
| 106 | 105 | xkotopon 23608 |
. . . 4
⊢ ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇 ↑ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇))) |
| 107 | 106 | 3adant2 1132 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
(𝑇 ↑ko
𝑅) ∈
(TopOn‘(𝑅 Cn 𝑇))) |
| 108 | 93, 102, 104, 107 | subbascn 23262 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
(𝐹 ∈ (((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) Cn (𝑇 ↑ko 𝑅)) ↔ (𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 ∪ 𝑅
∣ (𝑅
↾t 𝑦)
∈ Comp}, 𝑣 ∈
𝑇 ↦ {ℎ ∈ (𝑅 Cn 𝑇) ∣ (ℎ “ 𝑘) ⊆ 𝑣})(◡𝐹 “ 𝑥) ∈ ((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅))))) |
| 109 | 8, 85, 108 | mpbir2and 713 |
1
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp
∧ 𝑇 ∈ Top) →
𝐹 ∈ (((𝑇 ↑ko 𝑆) ×t (𝑆 ↑ko 𝑅)) Cn (𝑇 ↑ko 𝑅))) |