MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkococn Structured version   Visualization version   GIF version

Theorem xkococn 23563
Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
xkococn.1 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
Assertion
Ref Expression
xkococn ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝐹 ∈ (((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) Cn (𝑇ko 𝑅)))
Distinct variable groups:   𝑓,𝑔,𝑅   𝑆,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝐹(𝑓,𝑔)

Proof of Theorem xkococn
Dummy variables 𝑘 𝑎 𝑣 𝑥 𝑦 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 772 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑓 ∈ (𝑆 Cn 𝑇) ∧ 𝑔 ∈ (𝑅 Cn 𝑆))) → 𝑔 ∈ (𝑅 Cn 𝑆))
2 simprl 770 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑓 ∈ (𝑆 Cn 𝑇) ∧ 𝑔 ∈ (𝑅 Cn 𝑆))) → 𝑓 ∈ (𝑆 Cn 𝑇))
3 cnco 23169 . . . . 5 ((𝑔 ∈ (𝑅 Cn 𝑆) ∧ 𝑓 ∈ (𝑆 Cn 𝑇)) → (𝑓𝑔) ∈ (𝑅 Cn 𝑇))
41, 2, 3syl2anc 584 . . . 4 (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑓 ∈ (𝑆 Cn 𝑇) ∧ 𝑔 ∈ (𝑅 Cn 𝑆))) → (𝑓𝑔) ∈ (𝑅 Cn 𝑇))
54ralrimivva 3172 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → ∀𝑓 ∈ (𝑆 Cn 𝑇)∀𝑔 ∈ (𝑅 Cn 𝑆)(𝑓𝑔) ∈ (𝑅 Cn 𝑇))
6 xkococn.1 . . . 4 𝐹 = (𝑓 ∈ (𝑆 Cn 𝑇), 𝑔 ∈ (𝑅 Cn 𝑆) ↦ (𝑓𝑔))
76fmpo 8010 . . 3 (∀𝑓 ∈ (𝑆 Cn 𝑇)∀𝑔 ∈ (𝑅 Cn 𝑆)(𝑓𝑔) ∈ (𝑅 Cn 𝑇) ↔ 𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇))
85, 7sylib 218 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇))
9 eqid 2729 . . . . . . 7 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})
109rnmpo 7486 . . . . . 6 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}}
1110eleq2i 2820 . . . . 5 (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ 𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}})
12 abid 2711 . . . . 5 (𝑥 ∈ {𝑥 ∣ ∃𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}} ↔ ∃𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})
13 oveq2 7361 . . . . . . 7 (𝑦 = 𝑘 → (𝑅t 𝑦) = (𝑅t 𝑘))
1413eleq1d 2813 . . . . . 6 (𝑦 = 𝑘 → ((𝑅t 𝑦) ∈ Comp ↔ (𝑅t 𝑘) ∈ Comp))
1514rexrab 3658 . . . . 5 (∃𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ ∃𝑘 ∈ 𝒫 𝑅((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
1611, 12, 153bitri 297 . . . 4 (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ ∃𝑘 ∈ 𝒫 𝑅((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
178ad2antrr 726 . . . . . . . . . . . . 13 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → 𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇))
18 ffn 6656 . . . . . . . . . . . . 13 (𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇) → 𝐹 Fn ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)))
19 elpreima 6996 . . . . . . . . . . . . 13 (𝐹 Fn ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)) → (𝑦 ∈ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ (𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)) ∧ (𝐹𝑦) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})))
2017, 18, 193syl 18 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → (𝑦 ∈ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ↔ (𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)) ∧ (𝐹𝑦) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})))
21 coeq1 5804 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑎 → (𝑓𝑔) = (𝑎𝑔))
22 coeq2 5805 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑏 → (𝑎𝑔) = (𝑎𝑏))
23 vex 3442 . . . . . . . . . . . . . . . . . . . . 21 𝑎 ∈ V
24 vex 3442 . . . . . . . . . . . . . . . . . . . . 21 𝑏 ∈ V
2523, 24coex 7870 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑏) ∈ V
2621, 22, 6, 25ovmpo 7513 . . . . . . . . . . . . . . . . . . 19 ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) → (𝑎𝐹𝑏) = (𝑎𝑏))
2726adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → (𝑎𝐹𝑏) = (𝑎𝑏))
2827eleq1d 2813 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → ((𝑎𝐹𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑎𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
29 imaeq1 6010 . . . . . . . . . . . . . . . . . . . . 21 ( = (𝑎𝑏) → (𝑘) = ((𝑎𝑏) “ 𝑘))
3029sseq1d 3969 . . . . . . . . . . . . . . . . . . . 20 ( = (𝑎𝑏) → ((𝑘) ⊆ 𝑣 ↔ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣))
3130elrab 3650 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ ((𝑎𝑏) ∈ (𝑅 Cn 𝑇) ∧ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣))
3231simprbi 496 . . . . . . . . . . . . . . . . . 18 ((𝑎𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)
33 simp2 1137 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝑆 ∈ 𝑛-Locally Comp)
3433ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑆 ∈ 𝑛-Locally Comp)
35 elpwi 4560 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ 𝒫 𝑅𝑘 𝑅)
3635ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) → 𝑘 𝑅)
3736ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑘 𝑅)
38 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) → (𝑅t 𝑘) ∈ Comp)
3938ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)) → (𝑅t 𝑘) ∈ Comp)
40 simplr 768 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑣𝑇)
41 simprll 778 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑎 ∈ (𝑆 Cn 𝑇))
42 simprlr 779 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)) → 𝑏 ∈ (𝑅 Cn 𝑆))
43 simprr 772 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)) → ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)
446, 34, 37, 39, 40, 41, 42, 43xkococnlem 23562 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ ((𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆)) ∧ ((𝑎𝑏) “ 𝑘) ⊆ 𝑣)) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝑎, 𝑏⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})))
4544expr 456 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → (((𝑎𝑏) “ 𝑘) ⊆ 𝑣 → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝑎, 𝑏⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
4632, 45syl5 34 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → ((𝑎𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝑎, 𝑏⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
4728, 46sylbid 240 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ (𝑎 ∈ (𝑆 Cn 𝑇) ∧ 𝑏 ∈ (𝑅 Cn 𝑆))) → ((𝑎𝐹𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝑎, 𝑏⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
4847ralrimivva 3172 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → ∀𝑎 ∈ (𝑆 Cn 𝑇)∀𝑏 ∈ (𝑅 Cn 𝑆)((𝑎𝐹𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝑎, 𝑏⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
49 fveq2 6826 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝐹𝑦) = (𝐹‘⟨𝑎, 𝑏⟩))
50 df-ov 7356 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐹𝑏) = (𝐹‘⟨𝑎, 𝑏⟩)
5149, 50eqtr4di 2782 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝐹𝑦) = (𝑎𝐹𝑏))
5251eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑎, 𝑏⟩ → ((𝐹𝑦) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} ↔ (𝑎𝐹𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
53 eleq1 2816 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨𝑎, 𝑏⟩ → (𝑦𝑧 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑧))
5453anbi1d 631 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨𝑎, 𝑏⟩ → ((𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})) ↔ (⟨𝑎, 𝑏⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
5554rexbidv 3153 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨𝑎, 𝑏⟩ → (∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})) ↔ ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝑎, 𝑏⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
5652, 55imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨𝑎, 𝑏⟩ → (((𝐹𝑦) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))) ↔ ((𝑎𝐹𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝑎, 𝑏⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})))))
5756ralxp 5788 . . . . . . . . . . . . . . 15 (∀𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))((𝐹𝑦) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))) ↔ ∀𝑎 ∈ (𝑆 Cn 𝑇)∀𝑏 ∈ (𝑅 Cn 𝑆)((𝑎𝐹𝑏) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(⟨𝑎, 𝑏⟩ ∈ 𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
5848, 57sylibr 234 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → ∀𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))((𝐹𝑦) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
5958r19.21bi 3221 . . . . . . . . . . . . 13 (((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) ∧ 𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))) → ((𝐹𝑦) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
6059expimpd 453 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → ((𝑦 ∈ ((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆)) ∧ (𝐹𝑦) ∈ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
6120, 60sylbid 240 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → (𝑦 ∈ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → ∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
6261ralrimiv 3120 . . . . . . . . . 10 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → ∀𝑦 ∈ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})))
63 nllytop 23376 . . . . . . . . . . . . . . 15 (𝑆 ∈ 𝑛-Locally Comp → 𝑆 ∈ Top)
64633ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝑆 ∈ Top)
65 simp3 1138 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝑇 ∈ Top)
66 xkotop 23491 . . . . . . . . . . . . . 14 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ Top)
6764, 65, 66syl2anc 584 . . . . . . . . . . . . 13 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ Top)
68 simp1 1136 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝑅 ∈ Top)
69 xkotop 23491 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ Top)
7068, 64, 69syl2anc 584 . . . . . . . . . . . . 13 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → (𝑆ko 𝑅) ∈ Top)
71 txtop 23472 . . . . . . . . . . . . 13 (((𝑇ko 𝑆) ∈ Top ∧ (𝑆ko 𝑅) ∈ Top) → ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ∈ Top)
7267, 70, 71syl2anc 584 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ∈ Top)
7372ad2antrr 726 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ∈ Top)
74 eltop2 22878 . . . . . . . . . . 11 (((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ∈ Top → ((𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ↔ ∀𝑦 ∈ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
7573, 74syl 17 . . . . . . . . . 10 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → ((𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ↔ ∀𝑦 ∈ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})∃𝑧 ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))(𝑦𝑧𝑧 ⊆ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
7662, 75mpbird 257 . . . . . . . . 9 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)))
77 imaeq2 6011 . . . . . . . . . 10 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (𝐹𝑥) = (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))
7877eleq1d 2813 . . . . . . . . 9 (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → ((𝐹𝑥) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ↔ (𝐹 “ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))))
7976, 78syl5ibrcom 247 . . . . . . . 8 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) ∧ 𝑣𝑇) → (𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (𝐹𝑥) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))))
8079rexlimdva 3130 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ (𝑘 ∈ 𝒫 𝑅 ∧ (𝑅t 𝑘) ∈ Comp)) → (∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (𝐹𝑥) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))))
8180anassrs 467 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ 𝑘 ∈ 𝒫 𝑅) ∧ (𝑅t 𝑘) ∈ Comp) → (∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣} → (𝐹𝑥) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))))
8281expimpd 453 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) ∧ 𝑘 ∈ 𝒫 𝑅) → (((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → (𝐹𝑥) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))))
8382rexlimdva 3130 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → (∃𝑘 ∈ 𝒫 𝑅((𝑅t 𝑘) ∈ Comp ∧ ∃𝑣𝑇 𝑥 = { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → (𝐹𝑥) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))))
8416, 83biimtrid 242 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → (𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) → (𝐹𝑥) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅))))
8584ralrimiv 3120 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})(𝐹𝑥) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)))
86 eqid 2729 . . . . . 6 (𝑇ko 𝑆) = (𝑇ko 𝑆)
8786xkotopon 23503 . . . . 5 ((𝑆 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
8864, 65, 87syl2anc 584 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → (𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)))
89 eqid 2729 . . . . . 6 (𝑆ko 𝑅) = (𝑆ko 𝑅)
9089xkotopon 23503 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
9168, 64, 90syl2anc 584 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆)))
92 txtopon 23494 . . . 4 (((𝑇ko 𝑆) ∈ (TopOn‘(𝑆 Cn 𝑇)) ∧ (𝑆ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑆))) → ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ∈ (TopOn‘((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))))
9388, 91, 92syl2anc 584 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) ∈ (TopOn‘((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))))
94 ovex 7386 . . . . . 6 (𝑅 Cn 𝑇) ∈ V
9594pwex 5322 . . . . 5 𝒫 (𝑅 Cn 𝑇) ∈ V
96 eqid 2729 . . . . . . 7 𝑅 = 𝑅
97 eqid 2729 . . . . . . 7 {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} = {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}
9896, 97, 9xkotf 23488 . . . . . 6 (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇)
99 frn 6663 . . . . . 6 ((𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}):({𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp} × 𝑇)⟶𝒫 (𝑅 Cn 𝑇) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇))
10098, 99ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑇)
10195, 100ssexi 5264 . . . 4 ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V
102101a1i 11 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}) ∈ V)
10396, 97, 9xkoval 23490 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
1041033adant2 1131 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣}))))
105 eqid 2729 . . . . 5 (𝑇ko 𝑅) = (𝑇ko 𝑅)
106105xkotopon 23503 . . . 4 ((𝑅 ∈ Top ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
1071063adant2 1131 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → (𝑇ko 𝑅) ∈ (TopOn‘(𝑅 Cn 𝑇)))
10893, 102, 104, 107subbascn 23157 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → (𝐹 ∈ (((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) Cn (𝑇ko 𝑅)) ↔ (𝐹:((𝑆 Cn 𝑇) × (𝑅 Cn 𝑆))⟶(𝑅 Cn 𝑇) ∧ ∀𝑥 ∈ ran (𝑘 ∈ {𝑦 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑦) ∈ Comp}, 𝑣𝑇 ↦ { ∈ (𝑅 Cn 𝑇) ∣ (𝑘) ⊆ 𝑣})(𝐹𝑥) ∈ ((𝑇ko 𝑆) ×t (𝑆ko 𝑅)))))
1098, 85, 108mpbir2and 713 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top) → 𝐹 ∈ (((𝑇ko 𝑆) ×t (𝑆ko 𝑅)) Cn (𝑇ko 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  wss 3905  𝒫 cpw 4553  cop 4585   cuni 4861   × cxp 5621  ccnv 5622  ran crn 5624  cima 5626  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  ficfi 9319  t crest 17342  topGenctg 17359  Topctop 22796  TopOnctopon 22813   Cn ccn 23127  Compccmp 23289  𝑛-Locally cnlly 23368   ×t ctx 23463  ko cxko 23464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-1o 8395  df-2o 8396  df-map 8762  df-en 8880  df-dom 8881  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-top 22797  df-topon 22814  df-bases 22849  df-ntr 22923  df-nei 23001  df-cn 23130  df-cmp 23290  df-nlly 23370  df-tx 23465  df-xko 23466
This theorem is referenced by:  cnmptkk  23586  xkofvcn  23587  efmndtmd  24004
  Copyright terms: Public domain W3C validator