Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infdesc Structured version   Visualization version   GIF version

Theorem infdesc 42638
Description: Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
infdesc.x (𝑦 = 𝑥 → (𝜓𝜒))
infdesc.z (𝑦 = 𝑧 → (𝜓𝜃))
infdesc.s (𝜑𝑆 ⊆ (ℤ𝑀))
infdesc.1 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃𝑧 < 𝑥))
Assertion
Ref Expression
infdesc (𝜑 → {𝑦𝑆𝜓} = ∅)
Distinct variable groups:   𝜑,𝑥,𝑧   𝜓,𝑥,𝑧   𝜒,𝑦   𝜃,𝑦   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑧)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem infdesc
StepHypRef Expression
1 df-ne 2927 . . 3 ({𝑦𝑆𝜓} ≠ ∅ ↔ ¬ {𝑦𝑆𝜓} = ∅)
2 ssrab2 4046 . . . . . 6 {𝑦𝑆𝜓} ⊆ 𝑆
3 infdesc.s . . . . . 6 (𝜑𝑆 ⊆ (ℤ𝑀))
42, 3sstrid 3961 . . . . 5 (𝜑 → {𝑦𝑆𝜓} ⊆ (ℤ𝑀))
5 uzwo 12877 . . . . 5 (({𝑦𝑆𝜓} ⊆ (ℤ𝑀) ∧ {𝑦𝑆𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
64, 5sylan 580 . . . 4 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
7 infdesc.x . . . . . . . . . 10 (𝑦 = 𝑥 → (𝜓𝜒))
87elrab 3662 . . . . . . . . 9 (𝑥 ∈ {𝑦𝑆𝜓} ↔ (𝑥𝑆𝜒))
9 infdesc.1 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃𝑧 < 𝑥))
10 uzssre 12822 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℝ
113, 10sstrdi 3962 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ⊆ ℝ)
1211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝑆 ⊆ ℝ)
1312sselda 3949 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
1411sselda 3949 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ)
1514adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → 𝑥 ∈ ℝ)
1613, 15ltnled 11328 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → (𝑧 < 𝑥 ↔ ¬ 𝑥𝑧))
1716anbi2d 630 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → ((𝜃𝑧 < 𝑥) ↔ (𝜃 ∧ ¬ 𝑥𝑧)))
1817rexbidva 3156 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (∃𝑧𝑆 (𝜃𝑧 < 𝑥) ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧)))
1918adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝜒)) → (∃𝑧𝑆 (𝜃𝑧 < 𝑥) ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧)))
209, 19mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
218, 20sylan2b 594 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑦𝑆𝜓}) → ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
22 infdesc.z . . . . . . . . 9 (𝑦 = 𝑧 → (𝜓𝜃))
2322rexrab 3670 . . . . . . . 8 (∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
2421, 23sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ {𝑦𝑆𝜓}) → ∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧)
2524ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧)
26 rexnal 3083 . . . . . . . 8 (∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
2726ralbii 3076 . . . . . . 7 (∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ∀𝑥 ∈ {𝑦𝑆𝜓} ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
28 ralnex 3056 . . . . . . 7 (∀𝑥 ∈ {𝑦𝑆𝜓} ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
2927, 28bitri 275 . . . . . 6 (∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
3025, 29sylib 218 . . . . 5 (𝜑 → ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
3130adantr 480 . . . 4 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
326, 31pm2.21dd 195 . . 3 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → {𝑦𝑆𝜓} = ∅)
331, 32sylan2br 595 . 2 ((𝜑 ∧ ¬ {𝑦𝑆𝜓} = ∅) → {𝑦𝑆𝜓} = ∅)
3433pm2.18da 799 1 (𝜑 → {𝑦𝑆𝜓} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299   class class class wbr 5110  cfv 6514  cr 11074   < clt 11215  cle 11216  cuz 12800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801
This theorem is referenced by:  nna4b4nsq  42655
  Copyright terms: Public domain W3C validator