Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infdesc Structured version   Visualization version   GIF version

Theorem infdesc 42633
Description: Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
infdesc.x (𝑦 = 𝑥 → (𝜓𝜒))
infdesc.z (𝑦 = 𝑧 → (𝜓𝜃))
infdesc.s (𝜑𝑆 ⊆ (ℤ𝑀))
infdesc.1 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃𝑧 < 𝑥))
Assertion
Ref Expression
infdesc (𝜑 → {𝑦𝑆𝜓} = ∅)
Distinct variable groups:   𝜑,𝑥,𝑧   𝜓,𝑥,𝑧   𝜒,𝑦   𝜃,𝑦   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑧)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem infdesc
StepHypRef Expression
1 df-ne 2934 . . 3 ({𝑦𝑆𝜓} ≠ ∅ ↔ ¬ {𝑦𝑆𝜓} = ∅)
2 ssrab2 4060 . . . . . 6 {𝑦𝑆𝜓} ⊆ 𝑆
3 infdesc.s . . . . . 6 (𝜑𝑆 ⊆ (ℤ𝑀))
42, 3sstrid 3975 . . . . 5 (𝜑 → {𝑦𝑆𝜓} ⊆ (ℤ𝑀))
5 uzwo 12932 . . . . 5 (({𝑦𝑆𝜓} ⊆ (ℤ𝑀) ∧ {𝑦𝑆𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
64, 5sylan 580 . . . 4 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
7 infdesc.x . . . . . . . . . 10 (𝑦 = 𝑥 → (𝜓𝜒))
87elrab 3676 . . . . . . . . 9 (𝑥 ∈ {𝑦𝑆𝜓} ↔ (𝑥𝑆𝜒))
9 infdesc.1 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃𝑧 < 𝑥))
10 uzssre 12879 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℝ
113, 10sstrdi 3976 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ⊆ ℝ)
1211adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝑆 ⊆ ℝ)
1312sselda 3963 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
1411sselda 3963 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ)
1514adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → 𝑥 ∈ ℝ)
1613, 15ltnled 11387 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → (𝑧 < 𝑥 ↔ ¬ 𝑥𝑧))
1716anbi2d 630 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → ((𝜃𝑧 < 𝑥) ↔ (𝜃 ∧ ¬ 𝑥𝑧)))
1817rexbidva 3163 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (∃𝑧𝑆 (𝜃𝑧 < 𝑥) ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧)))
1918adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝜒)) → (∃𝑧𝑆 (𝜃𝑧 < 𝑥) ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧)))
209, 19mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
218, 20sylan2b 594 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑦𝑆𝜓}) → ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
22 infdesc.z . . . . . . . . 9 (𝑦 = 𝑧 → (𝜓𝜃))
2322rexrab 3684 . . . . . . . 8 (∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
2421, 23sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ {𝑦𝑆𝜓}) → ∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧)
2524ralrimiva 3133 . . . . . 6 (𝜑 → ∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧)
26 rexnal 3090 . . . . . . . 8 (∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
2726ralbii 3083 . . . . . . 7 (∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ∀𝑥 ∈ {𝑦𝑆𝜓} ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
28 ralnex 3063 . . . . . . 7 (∀𝑥 ∈ {𝑦𝑆𝜓} ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
2927, 28bitri 275 . . . . . 6 (∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
3025, 29sylib 218 . . . . 5 (𝜑 → ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
3130adantr 480 . . . 4 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
326, 31pm2.21dd 195 . . 3 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → {𝑦𝑆𝜓} = ∅)
331, 32sylan2br 595 . 2 ((𝜑 ∧ ¬ {𝑦𝑆𝜓} = ∅) → {𝑦𝑆𝜓} = ∅)
3433pm2.18da 799 1 (𝜑 → {𝑦𝑆𝜓} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  wss 3931  c0 4313   class class class wbr 5124  cfv 6536  cr 11133   < clt 11274  cle 11275  cuz 12857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858
This theorem is referenced by:  nna4b4nsq  42650
  Copyright terms: Public domain W3C validator