Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infdesc Structured version   Visualization version   GIF version

Theorem infdesc 42098
Description: Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
infdesc.x (𝑦 = 𝑥 → (𝜓𝜒))
infdesc.z (𝑦 = 𝑧 → (𝜓𝜃))
infdesc.s (𝜑𝑆 ⊆ (ℤ𝑀))
infdesc.1 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃𝑧 < 𝑥))
Assertion
Ref Expression
infdesc (𝜑 → {𝑦𝑆𝜓} = ∅)
Distinct variable groups:   𝜑,𝑥,𝑧   𝜓,𝑥,𝑧   𝜒,𝑦   𝜃,𝑦   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑧)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem infdesc
StepHypRef Expression
1 df-ne 2938 . . 3 ({𝑦𝑆𝜓} ≠ ∅ ↔ ¬ {𝑦𝑆𝜓} = ∅)
2 ssrab2 4077 . . . . . 6 {𝑦𝑆𝜓} ⊆ 𝑆
3 infdesc.s . . . . . 6 (𝜑𝑆 ⊆ (ℤ𝑀))
42, 3sstrid 3993 . . . . 5 (𝜑 → {𝑦𝑆𝜓} ⊆ (ℤ𝑀))
5 uzwo 12933 . . . . 5 (({𝑦𝑆𝜓} ⊆ (ℤ𝑀) ∧ {𝑦𝑆𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
64, 5sylan 578 . . . 4 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
7 infdesc.x . . . . . . . . . 10 (𝑦 = 𝑥 → (𝜓𝜒))
87elrab 3684 . . . . . . . . 9 (𝑥 ∈ {𝑦𝑆𝜓} ↔ (𝑥𝑆𝜒))
9 infdesc.1 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃𝑧 < 𝑥))
10 uzssre 12882 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℝ
113, 10sstrdi 3994 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ⊆ ℝ)
1211adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝑆 ⊆ ℝ)
1312sselda 3982 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
1411sselda 3982 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ)
1514adantr 479 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → 𝑥 ∈ ℝ)
1613, 15ltnled 11399 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → (𝑧 < 𝑥 ↔ ¬ 𝑥𝑧))
1716anbi2d 628 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → ((𝜃𝑧 < 𝑥) ↔ (𝜃 ∧ ¬ 𝑥𝑧)))
1817rexbidva 3174 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (∃𝑧𝑆 (𝜃𝑧 < 𝑥) ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧)))
1918adantrr 715 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝜒)) → (∃𝑧𝑆 (𝜃𝑧 < 𝑥) ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧)))
209, 19mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
218, 20sylan2b 592 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑦𝑆𝜓}) → ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
22 infdesc.z . . . . . . . . 9 (𝑦 = 𝑧 → (𝜓𝜃))
2322rexrab 3693 . . . . . . . 8 (∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
2421, 23sylibr 233 . . . . . . 7 ((𝜑𝑥 ∈ {𝑦𝑆𝜓}) → ∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧)
2524ralrimiva 3143 . . . . . 6 (𝜑 → ∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧)
26 rexnal 3097 . . . . . . . 8 (∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
2726ralbii 3090 . . . . . . 7 (∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ∀𝑥 ∈ {𝑦𝑆𝜓} ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
28 ralnex 3069 . . . . . . 7 (∀𝑥 ∈ {𝑦𝑆𝜓} ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
2927, 28bitri 274 . . . . . 6 (∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
3025, 29sylib 217 . . . . 5 (𝜑 → ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
3130adantr 479 . . . 4 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
326, 31pm2.21dd 194 . . 3 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → {𝑦𝑆𝜓} = ∅)
331, 32sylan2br 593 . 2 ((𝜑 ∧ ¬ {𝑦𝑆𝜓} = ∅) → {𝑦𝑆𝜓} = ∅)
3433pm2.18da 798 1 (𝜑 → {𝑦𝑆𝜓} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  wral 3058  wrex 3067  {crab 3430  wss 3949  c0 4326   class class class wbr 5152  cfv 6553  cr 11145   < clt 11286  cle 11287  cuz 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861
This theorem is referenced by:  nna4b4nsq  42115
  Copyright terms: Public domain W3C validator