| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infdesc | Structured version Visualization version GIF version | ||
| Description: Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| infdesc.x | ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) |
| infdesc.z | ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) |
| infdesc.s | ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) |
| infdesc.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) |
| Ref | Expression |
|---|---|
| infdesc | ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . . 3 ⊢ ({𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅ ↔ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) | |
| 2 | ssrab2 4027 | . . . . . 6 ⊢ {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ 𝑆 | |
| 3 | infdesc.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) | |
| 4 | 2, 3 | sstrid 3941 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀)) |
| 5 | uzwo 12809 | . . . . 5 ⊢ (({𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀) ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 7 | infdesc.x | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) | |
| 8 | 7 | elrab 3642 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ↔ (𝑥 ∈ 𝑆 ∧ 𝜒)) |
| 9 | infdesc.1 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) | |
| 10 | uzssre 12754 | . . . . . . . . . . . . . . . . 17 ⊢ (ℤ≥‘𝑀) ⊆ ℝ | |
| 11 | 3, 10 | sstrdi 3942 | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 12 | 11 | adantr 480 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ) |
| 13 | 12 | sselda 3929 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ ℝ) |
| 14 | 11 | sselda 3929 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ) |
| 15 | 14 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ ℝ) |
| 16 | 13, 15 | ltnled 11260 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑧 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑧)) |
| 17 | 16 | anbi2d 630 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → ((𝜃 ∧ 𝑧 < 𝑥) ↔ (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 18 | 17 | rexbidva 3154 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 19 | 18 | adantrr 717 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 20 | 9, 19 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 21 | 8, 20 | sylan2b 594 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 22 | infdesc.z | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) | |
| 23 | 22 | rexrab 3650 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 24 | 21, 23 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
| 25 | 24 | ralrimiva 3124 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
| 26 | rexnal 3084 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 27 | 26 | ralbii 3078 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 28 | ralnex 3058 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 29 | 27, 28 | bitri 275 | . . . . . 6 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 30 | 25, 29 | sylib 218 | . . . . 5 ⊢ (𝜑 → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 32 | 6, 31 | pm2.21dd 195 | . . 3 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| 33 | 1, 32 | sylan2br 595 | . 2 ⊢ ((𝜑 ∧ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| 34 | 33 | pm2.18da 799 | 1 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3897 ∅c0 4280 class class class wbr 5089 ‘cfv 6481 ℝcr 11005 < clt 11146 ≤ cle 11147 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 |
| This theorem is referenced by: nna4b4nsq 42763 |
| Copyright terms: Public domain | W3C validator |