Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infdesc Structured version   Visualization version   GIF version

Theorem infdesc 41385
Description: Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
infdesc.x (𝑦 = 𝑥 → (𝜓𝜒))
infdesc.z (𝑦 = 𝑧 → (𝜓𝜃))
infdesc.s (𝜑𝑆 ⊆ (ℤ𝑀))
infdesc.1 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃𝑧 < 𝑥))
Assertion
Ref Expression
infdesc (𝜑 → {𝑦𝑆𝜓} = ∅)
Distinct variable groups:   𝜑,𝑥,𝑧   𝜓,𝑥,𝑧   𝜒,𝑦   𝜃,𝑦   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦)   𝜒(𝑥,𝑧)   𝜃(𝑥,𝑧)   𝑀(𝑥,𝑦,𝑧)

Proof of Theorem infdesc
StepHypRef Expression
1 df-ne 2942 . . 3 ({𝑦𝑆𝜓} ≠ ∅ ↔ ¬ {𝑦𝑆𝜓} = ∅)
2 ssrab2 4078 . . . . . 6 {𝑦𝑆𝜓} ⊆ 𝑆
3 infdesc.s . . . . . 6 (𝜑𝑆 ⊆ (ℤ𝑀))
42, 3sstrid 3994 . . . . 5 (𝜑 → {𝑦𝑆𝜓} ⊆ (ℤ𝑀))
5 uzwo 12895 . . . . 5 (({𝑦𝑆𝜓} ⊆ (ℤ𝑀) ∧ {𝑦𝑆𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
64, 5sylan 581 . . . 4 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
7 infdesc.x . . . . . . . . . 10 (𝑦 = 𝑥 → (𝜓𝜒))
87elrab 3684 . . . . . . . . 9 (𝑥 ∈ {𝑦𝑆𝜓} ↔ (𝑥𝑆𝜒))
9 infdesc.1 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃𝑧 < 𝑥))
10 uzssre 12844 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℝ
113, 10sstrdi 3995 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ⊆ ℝ)
1211adantr 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝑆 ⊆ ℝ)
1312sselda 3983 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → 𝑧 ∈ ℝ)
1411sselda 3983 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆) → 𝑥 ∈ ℝ)
1514adantr 482 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → 𝑥 ∈ ℝ)
1613, 15ltnled 11361 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → (𝑧 < 𝑥 ↔ ¬ 𝑥𝑧))
1716anbi2d 630 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝑧𝑆) → ((𝜃𝑧 < 𝑥) ↔ (𝜃 ∧ ¬ 𝑥𝑧)))
1817rexbidva 3177 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (∃𝑧𝑆 (𝜃𝑧 < 𝑥) ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧)))
1918adantrr 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝜒)) → (∃𝑧𝑆 (𝜃𝑧 < 𝑥) ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧)))
209, 19mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑆𝜒)) → ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
218, 20sylan2b 595 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑦𝑆𝜓}) → ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
22 infdesc.z . . . . . . . . 9 (𝑦 = 𝑧 → (𝜓𝜃))
2322rexrab 3693 . . . . . . . 8 (∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ∃𝑧𝑆 (𝜃 ∧ ¬ 𝑥𝑧))
2421, 23sylibr 233 . . . . . . 7 ((𝜑𝑥 ∈ {𝑦𝑆𝜓}) → ∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧)
2524ralrimiva 3147 . . . . . 6 (𝜑 → ∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧)
26 rexnal 3101 . . . . . . . 8 (∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
2726ralbii 3094 . . . . . . 7 (∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ∀𝑥 ∈ {𝑦𝑆𝜓} ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
28 ralnex 3073 . . . . . . 7 (∀𝑥 ∈ {𝑦𝑆𝜓} ¬ ∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
2927, 28bitri 275 . . . . . 6 (∀𝑥 ∈ {𝑦𝑆𝜓}∃𝑧 ∈ {𝑦𝑆𝜓} ¬ 𝑥𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
3025, 29sylib 217 . . . . 5 (𝜑 → ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
3130adantr 482 . . . 4 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → ¬ ∃𝑥 ∈ {𝑦𝑆𝜓}∀𝑧 ∈ {𝑦𝑆𝜓}𝑥𝑧)
326, 31pm2.21dd 194 . . 3 ((𝜑 ∧ {𝑦𝑆𝜓} ≠ ∅) → {𝑦𝑆𝜓} = ∅)
331, 32sylan2br 596 . 2 ((𝜑 ∧ ¬ {𝑦𝑆𝜓} = ∅) → {𝑦𝑆𝜓} = ∅)
3433pm2.18da 799 1 (𝜑 → {𝑦𝑆𝜓} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  {crab 3433  wss 3949  c0 4323   class class class wbr 5149  cfv 6544  cr 11109   < clt 11248  cle 11249  cuz 12822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823
This theorem is referenced by:  nna4b4nsq  41402
  Copyright terms: Public domain W3C validator