| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infdesc | Structured version Visualization version GIF version | ||
| Description: Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| infdesc.x | ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) |
| infdesc.z | ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) |
| infdesc.s | ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) |
| infdesc.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) |
| Ref | Expression |
|---|---|
| infdesc | ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ ({𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅ ↔ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) | |
| 2 | ssrab2 4031 | . . . . . 6 ⊢ {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ 𝑆 | |
| 3 | infdesc.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) | |
| 4 | 2, 3 | sstrid 3947 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀)) |
| 5 | uzwo 12812 | . . . . 5 ⊢ (({𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀) ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 7 | infdesc.x | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) | |
| 8 | 7 | elrab 3648 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ↔ (𝑥 ∈ 𝑆 ∧ 𝜒)) |
| 9 | infdesc.1 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) | |
| 10 | uzssre 12757 | . . . . . . . . . . . . . . . . 17 ⊢ (ℤ≥‘𝑀) ⊆ ℝ | |
| 11 | 3, 10 | sstrdi 3948 | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 12 | 11 | adantr 480 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ) |
| 13 | 12 | sselda 3935 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ ℝ) |
| 14 | 11 | sselda 3935 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ) |
| 15 | 14 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ ℝ) |
| 16 | 13, 15 | ltnled 11263 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑧 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑧)) |
| 17 | 16 | anbi2d 630 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → ((𝜃 ∧ 𝑧 < 𝑥) ↔ (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 18 | 17 | rexbidva 3151 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 19 | 18 | adantrr 717 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 20 | 9, 19 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 21 | 8, 20 | sylan2b 594 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 22 | infdesc.z | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) | |
| 23 | 22 | rexrab 3656 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 24 | 21, 23 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
| 25 | 24 | ralrimiva 3121 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
| 26 | rexnal 3081 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 27 | 26 | ralbii 3075 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 28 | ralnex 3055 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 29 | 27, 28 | bitri 275 | . . . . . 6 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 30 | 25, 29 | sylib 218 | . . . . 5 ⊢ (𝜑 → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 32 | 6, 31 | pm2.21dd 195 | . . 3 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| 33 | 1, 32 | sylan2br 595 | . 2 ⊢ ((𝜑 ∧ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| 34 | 33 | pm2.18da 799 | 1 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3394 ⊆ wss 3903 ∅c0 4284 class class class wbr 5092 ‘cfv 6482 ℝcr 11008 < clt 11149 ≤ cle 11150 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 |
| This theorem is referenced by: nna4b4nsq 42637 |
| Copyright terms: Public domain | W3C validator |