| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infdesc | Structured version Visualization version GIF version | ||
| Description: Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| infdesc.x | ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) |
| infdesc.z | ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) |
| infdesc.s | ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) |
| infdesc.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) |
| Ref | Expression |
|---|---|
| infdesc | ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2927 | . . 3 ⊢ ({𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅ ↔ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) | |
| 2 | ssrab2 4046 | . . . . . 6 ⊢ {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ 𝑆 | |
| 3 | infdesc.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) | |
| 4 | 2, 3 | sstrid 3961 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀)) |
| 5 | uzwo 12877 | . . . . 5 ⊢ (({𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀) ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 7 | infdesc.x | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) | |
| 8 | 7 | elrab 3662 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ↔ (𝑥 ∈ 𝑆 ∧ 𝜒)) |
| 9 | infdesc.1 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) | |
| 10 | uzssre 12822 | . . . . . . . . . . . . . . . . 17 ⊢ (ℤ≥‘𝑀) ⊆ ℝ | |
| 11 | 3, 10 | sstrdi 3962 | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 12 | 11 | adantr 480 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ) |
| 13 | 12 | sselda 3949 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ ℝ) |
| 14 | 11 | sselda 3949 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ) |
| 15 | 14 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ ℝ) |
| 16 | 13, 15 | ltnled 11328 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑧 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑧)) |
| 17 | 16 | anbi2d 630 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → ((𝜃 ∧ 𝑧 < 𝑥) ↔ (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 18 | 17 | rexbidva 3156 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 19 | 18 | adantrr 717 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 20 | 9, 19 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 21 | 8, 20 | sylan2b 594 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 22 | infdesc.z | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) | |
| 23 | 22 | rexrab 3670 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 24 | 21, 23 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
| 25 | 24 | ralrimiva 3126 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
| 26 | rexnal 3083 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 27 | 26 | ralbii 3076 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 28 | ralnex 3056 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 29 | 27, 28 | bitri 275 | . . . . . 6 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 30 | 25, 29 | sylib 218 | . . . . 5 ⊢ (𝜑 → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 32 | 6, 31 | pm2.21dd 195 | . . 3 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| 33 | 1, 32 | sylan2br 595 | . 2 ⊢ ((𝜑 ∧ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| 34 | 33 | pm2.18da 799 | 1 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 ⊆ wss 3917 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 ℝcr 11074 < clt 11215 ≤ cle 11216 ℤ≥cuz 12800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 |
| This theorem is referenced by: nna4b4nsq 42655 |
| Copyright terms: Public domain | W3C validator |