| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infdesc | Structured version Visualization version GIF version | ||
| Description: Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| infdesc.x | ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) |
| infdesc.z | ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) |
| infdesc.s | ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) |
| infdesc.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) |
| Ref | Expression |
|---|---|
| infdesc | ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2934 | . . 3 ⊢ ({𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅ ↔ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) | |
| 2 | ssrab2 4060 | . . . . . 6 ⊢ {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ 𝑆 | |
| 3 | infdesc.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) | |
| 4 | 2, 3 | sstrid 3975 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀)) |
| 5 | uzwo 12932 | . . . . 5 ⊢ (({𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀) ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 6 | 4, 5 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 7 | infdesc.x | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) | |
| 8 | 7 | elrab 3676 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ↔ (𝑥 ∈ 𝑆 ∧ 𝜒)) |
| 9 | infdesc.1 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) | |
| 10 | uzssre 12879 | . . . . . . . . . . . . . . . . 17 ⊢ (ℤ≥‘𝑀) ⊆ ℝ | |
| 11 | 3, 10 | sstrdi 3976 | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 12 | 11 | adantr 480 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ) |
| 13 | 12 | sselda 3963 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ ℝ) |
| 14 | 11 | sselda 3963 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ) |
| 15 | 14 | adantr 480 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ ℝ) |
| 16 | 13, 15 | ltnled 11387 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑧 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑧)) |
| 17 | 16 | anbi2d 630 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → ((𝜃 ∧ 𝑧 < 𝑥) ↔ (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 18 | 17 | rexbidva 3163 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 19 | 18 | adantrr 717 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
| 20 | 9, 19 | mpbid 232 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 21 | 8, 20 | sylan2b 594 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 22 | infdesc.z | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) | |
| 23 | 22 | rexrab 3684 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
| 24 | 21, 23 | sylibr 234 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
| 25 | 24 | ralrimiva 3133 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
| 26 | rexnal 3090 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 27 | 26 | ralbii 3083 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 28 | ralnex 3063 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
| 29 | 27, 28 | bitri 275 | . . . . . 6 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 30 | 25, 29 | sylib 218 | . . . . 5 ⊢ (𝜑 → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 31 | 30 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
| 32 | 6, 31 | pm2.21dd 195 | . . 3 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| 33 | 1, 32 | sylan2br 595 | . 2 ⊢ ((𝜑 ∧ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| 34 | 33 | pm2.18da 799 | 1 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 ⊆ wss 3931 ∅c0 4313 class class class wbr 5124 ‘cfv 6536 ℝcr 11133 < clt 11274 ≤ cle 11275 ℤ≥cuz 12857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 |
| This theorem is referenced by: nna4b4nsq 42650 |
| Copyright terms: Public domain | W3C validator |