![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infdesc | Structured version Visualization version GIF version |
Description: Infinite descent. The hypotheses say that 𝑆 is lower bounded, and that if 𝜓 holds for an integer in 𝑆, it holds for a smaller integer in 𝑆. By infinite descent, eventually we cannot go any smaller, therefore 𝜓 holds for no integer in 𝑆. (Contributed by SN, 20-Aug-2024.) |
Ref | Expression |
---|---|
infdesc.x | ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) |
infdesc.z | ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) |
infdesc.s | ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) |
infdesc.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) |
Ref | Expression |
---|---|
infdesc | ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2942 | . . 3 ⊢ ({𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅ ↔ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) | |
2 | ssrab2 4078 | . . . . . 6 ⊢ {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ 𝑆 | |
3 | infdesc.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ (ℤ≥‘𝑀)) | |
4 | 2, 3 | sstrid 3994 | . . . . 5 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀)) |
5 | uzwo 12895 | . . . . 5 ⊢ (({𝑦 ∈ 𝑆 ∣ 𝜓} ⊆ (ℤ≥‘𝑀) ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
6 | 4, 5 | sylan 581 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
7 | infdesc.x | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜒)) | |
8 | 7 | elrab 3684 | . . . . . . . . 9 ⊢ (𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ↔ (𝑥 ∈ 𝑆 ∧ 𝜒)) |
9 | infdesc.1 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥)) | |
10 | uzssre 12844 | . . . . . . . . . . . . . . . . 17 ⊢ (ℤ≥‘𝑀) ⊆ ℝ | |
11 | 3, 10 | sstrdi 3995 | . . . . . . . . . . . . . . . 16 ⊢ (𝜑 → 𝑆 ⊆ ℝ) |
12 | 11 | adantr 482 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ ℝ) |
13 | 12 | sselda 3983 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ ℝ) |
14 | 11 | sselda 3983 | . . . . . . . . . . . . . . 15 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ ℝ) |
15 | 14 | adantr 482 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ ℝ) |
16 | 13, 15 | ltnled 11361 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑧 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑧)) |
17 | 16 | anbi2d 630 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝑆) ∧ 𝑧 ∈ 𝑆) → ((𝜃 ∧ 𝑧 < 𝑥) ↔ (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
18 | 17 | rexbidva 3177 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
19 | 18 | adantrr 716 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → (∃𝑧 ∈ 𝑆 (𝜃 ∧ 𝑧 < 𝑥) ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧))) |
20 | 9, 19 | mpbid 231 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝜒)) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
21 | 8, 20 | sylan2b 595 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
22 | infdesc.z | . . . . . . . . 9 ⊢ (𝑦 = 𝑧 → (𝜓 ↔ 𝜃)) | |
23 | 22 | rexrab 3693 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∃𝑧 ∈ 𝑆 (𝜃 ∧ ¬ 𝑥 ≤ 𝑧)) |
24 | 21, 23 | sylibr 233 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}) → ∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
25 | 24 | ralrimiva 3147 | . . . . . 6 ⊢ (𝜑 → ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧) |
26 | rexnal 3101 | . . . . . . . 8 ⊢ (∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
27 | 26 | ralbii 3094 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
28 | ralnex 3073 | . . . . . . 7 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ ∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) | |
29 | 27, 28 | bitri 275 | . . . . . 6 ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∃𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓} ¬ 𝑥 ≤ 𝑧 ↔ ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
30 | 25, 29 | sylib 217 | . . . . 5 ⊢ (𝜑 → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
31 | 30 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → ¬ ∃𝑥 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}∀𝑧 ∈ {𝑦 ∈ 𝑆 ∣ 𝜓}𝑥 ≤ 𝑧) |
32 | 6, 31 | pm2.21dd 194 | . . 3 ⊢ ((𝜑 ∧ {𝑦 ∈ 𝑆 ∣ 𝜓} ≠ ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
33 | 1, 32 | sylan2br 596 | . 2 ⊢ ((𝜑 ∧ ¬ {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
34 | 33 | pm2.18da 799 | 1 ⊢ (𝜑 → {𝑦 ∈ 𝑆 ∣ 𝜓} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3433 ⊆ wss 3949 ∅c0 4323 class class class wbr 5149 ‘cfv 6544 ℝcr 11109 < clt 11248 ≤ cle 11249 ℤ≥cuz 12822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 |
This theorem is referenced by: nna4b4nsq 41402 |
Copyright terms: Public domain | W3C validator |