MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdom2d Structured version   Visualization version   GIF version

Theorem wdom2d 9269
Description: Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep 5205). (Contributed by Stefan O'Rear, 13-Feb-2015.)
Hypotheses
Ref Expression
wdom2d.a (𝜑𝐴𝑉)
wdom2d.b (𝜑𝐵𝑊)
wdom2d.o ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
Assertion
Ref Expression
wdom2d (𝜑𝐴* 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑋   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem wdom2d
Dummy variables 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wdom2d.b . . . . . 6 (𝜑𝐵𝑊)
2 rabexg 5250 . . . . . 6 (𝐵𝑊 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ∈ V)
31, 2syl 17 . . . . 5 (𝜑 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ∈ V)
4 wdom2d.a . . . . 5 (𝜑𝐴𝑉)
53, 4xpexd 7579 . . . 4 (𝜑 → ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} × 𝐴) ∈ V)
6 csbeq1 3831 . . . . . . . . . 10 (𝑧 = 𝑤𝑧 / 𝑦𝑋 = 𝑤 / 𝑦𝑋)
76eleq1d 2823 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 / 𝑦𝑋𝐴𝑤 / 𝑦𝑋𝐴))
87elrab 3617 . . . . . . . 8 (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↔ (𝑤𝐵𝑤 / 𝑦𝑋𝐴))
98simprbi 496 . . . . . . 7 (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} → 𝑤 / 𝑦𝑋𝐴)
109adantl 481 . . . . . 6 ((𝜑𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}) → 𝑤 / 𝑦𝑋𝐴)
1110fmpttd 6971 . . . . 5 (𝜑 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}⟶𝐴)
12 fssxp 6612 . . . . 5 ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}⟶𝐴 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) ⊆ ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} × 𝐴))
1311, 12syl 17 . . . 4 (𝜑 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) ⊆ ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} × 𝐴))
145, 13ssexd 5243 . . 3 (𝜑 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) ∈ V)
15 wdom2d.o . . . . . . . 8 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥 = 𝑋)
16 eleq1 2826 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
1716biimpcd 248 . . . . . . . . . . 11 (𝑥𝐴 → (𝑥 = 𝑋𝑋𝐴))
1817ancrd 551 . . . . . . . . . 10 (𝑥𝐴 → (𝑥 = 𝑋 → (𝑋𝐴𝑥 = 𝑋)))
1918adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝑥 = 𝑋 → (𝑋𝐴𝑥 = 𝑋)))
2019reximdv 3201 . . . . . . . 8 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝑥 = 𝑋 → ∃𝑦𝐵 (𝑋𝐴𝑥 = 𝑋)))
2115, 20mpd 15 . . . . . . 7 ((𝜑𝑥𝐴) → ∃𝑦𝐵 (𝑋𝐴𝑥 = 𝑋))
22 nfv 1918 . . . . . . . 8 𝑣(𝑋𝐴𝑥 = 𝑋)
23 nfcsb1v 3853 . . . . . . . . . 10 𝑦𝑣 / 𝑦𝑋
2423nfel1 2922 . . . . . . . . 9 𝑦𝑣 / 𝑦𝑋𝐴
2523nfeq2 2923 . . . . . . . . 9 𝑦 𝑥 = 𝑣 / 𝑦𝑋
2624, 25nfan 1903 . . . . . . . 8 𝑦(𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋)
27 csbeq1a 3842 . . . . . . . . . 10 (𝑦 = 𝑣𝑋 = 𝑣 / 𝑦𝑋)
2827eleq1d 2823 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑋𝐴𝑣 / 𝑦𝑋𝐴))
2927eqeq2d 2749 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑥 = 𝑋𝑥 = 𝑣 / 𝑦𝑋))
3028, 29anbi12d 630 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑋𝐴𝑥 = 𝑋) ↔ (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋)))
3122, 26, 30cbvrexw 3364 . . . . . . 7 (∃𝑦𝐵 (𝑋𝐴𝑥 = 𝑋) ↔ ∃𝑣𝐵 (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋))
3221, 31sylib 217 . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑣𝐵 (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋))
33 csbeq1 3831 . . . . . . . . . . . . 13 (𝑧 = 𝑣𝑧 / 𝑦𝑋 = 𝑣 / 𝑦𝑋)
3433eleq1d 2823 . . . . . . . . . . . 12 (𝑧 = 𝑣 → (𝑧 / 𝑦𝑋𝐴𝑣 / 𝑦𝑋𝐴))
3534elrab 3617 . . . . . . . . . . 11 (𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↔ (𝑣𝐵𝑣 / 𝑦𝑋𝐴))
3635simprbi 496 . . . . . . . . . 10 (𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} → 𝑣 / 𝑦𝑋𝐴)
37 csbeq1 3831 . . . . . . . . . . 11 (𝑤 = 𝑣𝑤 / 𝑦𝑋 = 𝑣 / 𝑦𝑋)
38 eqid 2738 . . . . . . . . . . 11 (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) = (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)
3937, 38fvmptg 6855 . . . . . . . . . 10 ((𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ∧ 𝑣 / 𝑦𝑋𝐴) → ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) = 𝑣 / 𝑦𝑋)
4036, 39mpdan 683 . . . . . . . . 9 (𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} → ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) = 𝑣 / 𝑦𝑋)
4140eqeq2d 2749 . . . . . . . 8 (𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} → (𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) ↔ 𝑥 = 𝑣 / 𝑦𝑋))
4241rexbiia 3176 . . . . . . 7 (∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) ↔ ∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = 𝑣 / 𝑦𝑋)
4334rexrab 3626 . . . . . . 7 (∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = 𝑣 / 𝑦𝑋 ↔ ∃𝑣𝐵 (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋))
4442, 43bitri 274 . . . . . 6 (∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣) ↔ ∃𝑣𝐵 (𝑣 / 𝑦𝑋𝐴𝑥 = 𝑣 / 𝑦𝑋))
4532, 44sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣))
4645ralrimiva 3107 . . . 4 (𝜑 → ∀𝑥𝐴𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣))
47 dffo3 6960 . . . 4 ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}–onto𝐴 ↔ ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}⟶𝐴 ∧ ∀𝑥𝐴𝑣 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴}𝑥 = ((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋)‘𝑣)))
4811, 46, 47sylanbrc 582 . . 3 (𝜑 → (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}–onto𝐴)
49 fowdom 9260 . . 3 (((𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋) ∈ V ∧ (𝑤 ∈ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ↦ 𝑤 / 𝑦𝑋):{𝑧𝐵𝑧 / 𝑦𝑋𝐴}–onto𝐴) → 𝐴* {𝑧𝐵𝑧 / 𝑦𝑋𝐴})
5014, 48, 49syl2anc 583 . 2 (𝜑𝐴* {𝑧𝐵𝑧 / 𝑦𝑋𝐴})
51 ssrab2 4009 . . . 4 {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ⊆ 𝐵
52 ssdomg 8741 . . . 4 (𝐵𝑊 → ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} ⊆ 𝐵 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼ 𝐵))
5351, 52mpi 20 . . 3 (𝐵𝑊 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼ 𝐵)
54 domwdom 9263 . . 3 ({𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼ 𝐵 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼* 𝐵)
551, 53, 543syl 18 . 2 (𝜑 → {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼* 𝐵)
56 wdomtr 9264 . 2 ((𝐴* {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ∧ {𝑧𝐵𝑧 / 𝑦𝑋𝐴} ≼* 𝐵) → 𝐴* 𝐵)
5750, 55, 56syl2anc 583 1 (𝜑𝐴* 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  csb 3828  wss 3883   class class class wbr 5070  cmpt 5153   × cxp 5578  wf 6414  ontowfo 6416  cfv 6418  cdom 8689  * cwdom 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-wdom 9254
This theorem is referenced by:  wdomd  9270  brwdom3  9271  unwdomg  9273  xpwdomg  9274  wdom2d2  40773
  Copyright terms: Public domain W3C validator