Step | Hyp | Ref
| Expression |
1 | | wdom2d.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
2 | | rabexg 5255 |
. . . . . 6
⊢ (𝐵 ∈ 𝑊 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V) |
4 | | wdom2d.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
5 | 3, 4 | xpexd 7601 |
. . . 4
⊢ (𝜑 → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴) ∈ V) |
6 | | csbeq1 3835 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → ⦋𝑧 / 𝑦⦌𝑋 = ⦋𝑤 / 𝑦⦌𝑋) |
7 | 6 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴 ↔ ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴)) |
8 | 7 | elrab 3624 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↔ (𝑤 ∈ 𝐵 ∧ ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴)) |
9 | 8 | simprbi 497 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴) |
10 | 9 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) → ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴) |
11 | 10 | fmpttd 6989 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴) |
12 | | fssxp 6628 |
. . . . 5
⊢ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ⊆ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴)) |
13 | 11, 12 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ⊆ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴)) |
14 | 5, 13 | ssexd 5248 |
. . 3
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ∈ V) |
15 | | wdom2d.o |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) |
16 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
17 | 16 | biimpcd 248 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝑋 → 𝑋 ∈ 𝐴)) |
18 | 17 | ancrd 552 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝑋 → (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
19 | 18 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝑋 → (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
20 | 19 | reximdv 3202 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝑥 = 𝑋 → ∃𝑦 ∈ 𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
21 | 15, 20 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋)) |
22 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑣(𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) |
23 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌𝑋 |
24 | 23 | nfel1 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 |
25 | 23 | nfeq2 2924 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 = ⦋𝑣 / 𝑦⦌𝑋 |
26 | 24, 25 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑦(⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋) |
27 | | csbeq1a 3846 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → 𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
28 | 27 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑋 ∈ 𝐴 ↔ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
29 | 27 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑥 = 𝑋 ↔ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
30 | 28, 29 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ((𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) ↔ (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋))) |
31 | 22, 26, 30 | cbvrexw 3374 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
32 | 21, 31 | sylib 217 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
33 | | csbeq1 3835 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑣 → ⦋𝑧 / 𝑦⦌𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
34 | 33 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑣 → (⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴 ↔ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
35 | 34 | elrab 3624 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
36 | 35 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴) |
37 | | csbeq1 3835 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑣 → ⦋𝑤 / 𝑦⦌𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
38 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) = (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) |
39 | 37, 38 | fvmptg 6873 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∧ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴) → ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) = ⦋𝑣 / 𝑦⦌𝑋) |
40 | 36, 39 | mpdan 684 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) = ⦋𝑣 / 𝑦⦌𝑋) |
41 | 40 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → (𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
42 | 41 | rexbiia 3180 |
. . . . . . 7
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ⦋𝑣 / 𝑦⦌𝑋) |
43 | 34 | rexrab 3633 |
. . . . . . 7
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ⦋𝑣 / 𝑦⦌𝑋 ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
44 | 42, 43 | bitri 274 |
. . . . . 6
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
45 | 32, 44 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣)) |
46 | 45 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣)) |
47 | | dffo3 6978 |
. . . 4
⊢ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴 ↔ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣))) |
48 | 11, 46, 47 | sylanbrc 583 |
. . 3
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴) |
49 | | fowdom 9330 |
. . 3
⊢ (((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ∈ V ∧ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴) → 𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) |
50 | 14, 48, 49 | syl2anc 584 |
. 2
⊢ (𝜑 → 𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) |
51 | | ssrab2 4013 |
. . . 4
⊢ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ⊆ 𝐵 |
52 | | ssdomg 8786 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ⊆ 𝐵 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵)) |
53 | 51, 52 | mpi 20 |
. . 3
⊢ (𝐵 ∈ 𝑊 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵) |
54 | | domwdom 9333 |
. . 3
⊢ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) |
55 | 1, 53, 54 | 3syl 18 |
. 2
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) |
56 | | wdomtr 9334 |
. 2
⊢ ((𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∧ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) → 𝐴 ≼* 𝐵) |
57 | 50, 55, 56 | syl2anc 584 |
1
⊢ (𝜑 → 𝐴 ≼* 𝐵) |