| Step | Hyp | Ref
| Expression |
| 1 | | wdom2d.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| 2 | | rabexg 5337 |
. . . . . 6
⊢ (𝐵 ∈ 𝑊 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V) |
| 3 | 1, 2 | syl 17 |
. . . . 5
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∈ V) |
| 4 | | wdom2d.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 5 | 3, 4 | xpexd 7771 |
. . . 4
⊢ (𝜑 → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴) ∈ V) |
| 6 | | csbeq1 3902 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → ⦋𝑧 / 𝑦⦌𝑋 = ⦋𝑤 / 𝑦⦌𝑋) |
| 7 | 6 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴 ↔ ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 8 | 7 | elrab 3692 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↔ (𝑤 ∈ 𝐵 ∧ ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 9 | 8 | simprbi 496 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴) |
| 10 | 9 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) → ⦋𝑤 / 𝑦⦌𝑋 ∈ 𝐴) |
| 11 | 10 | fmpttd 7135 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴) |
| 12 | | fssxp 6763 |
. . . . 5
⊢ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ⊆ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴)) |
| 13 | 11, 12 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ⊆ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} × 𝐴)) |
| 14 | 5, 13 | ssexd 5324 |
. . 3
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ∈ V) |
| 15 | | wdom2d.o |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) |
| 16 | | eleq1 2829 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
| 17 | 16 | biimpcd 249 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝑋 → 𝑋 ∈ 𝐴)) |
| 18 | 17 | ancrd 551 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝑋 → (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
| 19 | 18 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 = 𝑋 → (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
| 20 | 19 | reximdv 3170 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝑥 = 𝑋 → ∃𝑦 ∈ 𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋))) |
| 21 | 15, 20 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋)) |
| 22 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑣(𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) |
| 23 | | nfcsb1v 3923 |
. . . . . . . . . 10
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌𝑋 |
| 24 | 23 | nfel1 2922 |
. . . . . . . . 9
⊢
Ⅎ𝑦⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 |
| 25 | 23 | nfeq2 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 = ⦋𝑣 / 𝑦⦌𝑋 |
| 26 | 24, 25 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑦(⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋) |
| 27 | | csbeq1a 3913 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → 𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
| 28 | 27 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑋 ∈ 𝐴 ↔ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 29 | 27 | eqeq2d 2748 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑥 = 𝑋 ↔ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 30 | 28, 29 | anbi12d 632 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ((𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) ↔ (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋))) |
| 31 | 22, 26, 30 | cbvrexw 3307 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 (𝑋 ∈ 𝐴 ∧ 𝑥 = 𝑋) ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 32 | 21, 31 | sylib 218 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 33 | | csbeq1 3902 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑣 → ⦋𝑧 / 𝑦⦌𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
| 34 | 33 | eleq1d 2826 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑣 → (⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴 ↔ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 35 | 34 | elrab 3692 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↔ (𝑣 ∈ 𝐵 ∧ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴)) |
| 36 | 35 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴) |
| 37 | | csbeq1 3902 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑣 → ⦋𝑤 / 𝑦⦌𝑋 = ⦋𝑣 / 𝑦⦌𝑋) |
| 38 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) = (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) |
| 39 | 37, 38 | fvmptg 7014 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∧ ⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴) → ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) = ⦋𝑣 / 𝑦⦌𝑋) |
| 40 | 36, 39 | mpdan 687 |
. . . . . . . . 9
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) = ⦋𝑣 / 𝑦⦌𝑋) |
| 41 | 40 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} → (𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 42 | 41 | rexbiia 3092 |
. . . . . . 7
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ⦋𝑣 / 𝑦⦌𝑋) |
| 43 | 34 | rexrab 3702 |
. . . . . . 7
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ⦋𝑣 / 𝑦⦌𝑋 ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 44 | 42, 43 | bitri 275 |
. . . . . 6
⊢
(∃𝑣 ∈
{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣) ↔ ∃𝑣 ∈ 𝐵 (⦋𝑣 / 𝑦⦌𝑋 ∈ 𝐴 ∧ 𝑥 = ⦋𝑣 / 𝑦⦌𝑋)) |
| 45 | 32, 44 | sylibr 234 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣)) |
| 46 | 45 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣)) |
| 47 | | dffo3 7122 |
. . . 4
⊢ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴 ↔ ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑣 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}𝑥 = ((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋)‘𝑣))) |
| 48 | 11, 46, 47 | sylanbrc 583 |
. . 3
⊢ (𝜑 → (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴) |
| 49 | | fowdom 9611 |
. . 3
⊢ (((𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋) ∈ V ∧ (𝑤 ∈ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ↦ ⦋𝑤 / 𝑦⦌𝑋):{𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}–onto→𝐴) → 𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) |
| 50 | 14, 48, 49 | syl2anc 584 |
. 2
⊢ (𝜑 → 𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴}) |
| 51 | | ssrab2 4080 |
. . . 4
⊢ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ⊆ 𝐵 |
| 52 | | ssdomg 9040 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ⊆ 𝐵 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵)) |
| 53 | 51, 52 | mpi 20 |
. . 3
⊢ (𝐵 ∈ 𝑊 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵) |
| 54 | | domwdom 9614 |
. . 3
⊢ ({𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼ 𝐵 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) |
| 55 | 1, 53, 54 | 3syl 18 |
. 2
⊢ (𝜑 → {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) |
| 56 | | wdomtr 9615 |
. 2
⊢ ((𝐴 ≼* {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ∧ {𝑧 ∈ 𝐵 ∣ ⦋𝑧 / 𝑦⦌𝑋 ∈ 𝐴} ≼* 𝐵) → 𝐴 ≼* 𝐵) |
| 57 | 50, 55, 56 | syl2anc 584 |
1
⊢ (𝜑 → 𝐴 ≼* 𝐵) |