Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem3 Structured version   Visualization version   GIF version

Theorem lshpkrlem3 36820
Description: Lemma for lshpkrex 36826. Defining property of 𝐺𝑋. (Contributed by NM, 15-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem3 (𝜑 → ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑧, +   𝑧,𝐺   𝑧,𝑈   𝑧,𝑋   𝑧,𝑍,𝑘,𝑥,𝑦   𝑧, ·
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑘)   𝐷(𝑥,𝑦,𝑧,𝑘)   (𝑥,𝑦,𝑧,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑧,𝑘)   𝐾(𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧,𝑘)   𝑉(𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   0 (𝑥,𝑦,𝑧)

Proof of Theorem lshpkrlem3
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . . . 5 𝑉 = (Base‘𝑊)
2 lshpkrlem.a . . . . 5 + = (+g𝑊)
3 lshpkrlem.n . . . . 5 𝑁 = (LSpan‘𝑊)
4 lshpkrlem.p . . . . 5 = (LSSum‘𝑊)
5 lshpkrlem.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lshpkrlem.w . . . . 5 (𝜑𝑊 ∈ LVec)
7 lshpkrlem.u . . . . 5 (𝜑𝑈𝐻)
8 lshpkrlem.z . . . . 5 (𝜑𝑍𝑉)
9 lshpkrlem.x . . . . 5 (𝜑𝑋𝑉)
10 lshpkrlem.e . . . . 5 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
11 lshpkrlem.d . . . . 5 𝐷 = (Scalar‘𝑊)
12 lshpkrlem.k . . . . 5 𝐾 = (Base‘𝐷)
13 lshpkrlem.t . . . . 5 · = ( ·𝑠𝑊)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lshpsmreu 36817 . . . 4 (𝜑 → ∃!𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
15 riotasbc 7178 . . . 4 (∃!𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) → [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
1614, 15syl 17 . . 3 (𝜑[(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
17 eqeq1 2738 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + (𝑙 · 𝑍))))
1817rexbidv 3209 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
1918riotabidv 7161 . . . . 5 (𝑥 = 𝑋 → (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
20 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
21 oveq1 7209 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘 · 𝑍) = (𝑙 · 𝑍))
2221oveq2d 7218 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑍)) = (𝑦 + (𝑙 · 𝑍)))
2322eqeq2d 2745 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑥 = (𝑦 + (𝑙 · 𝑍))))
2423rexbidv 3209 . . . . . . . . 9 (𝑘 = 𝑙 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍))))
25 oveq1 7209 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 + (𝑙 · 𝑍)) = (𝑧 + (𝑙 · 𝑍)))
2625eqeq2d 2745 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ 𝑥 = (𝑧 + (𝑙 · 𝑍))))
2726cbvrexvw 3352 . . . . . . . . 9 (∃𝑦𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))
2824, 27bitrdi 290 . . . . . . . 8 (𝑘 = 𝑙 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
2928cbvriotavw 7169 . . . . . . 7 (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))
3029mpteq2i 5136 . . . . . 6 (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑥𝑉 ↦ (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
3120, 30eqtri 2762 . . . . 5 𝐺 = (𝑥𝑉 ↦ (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
32 riotaex 7163 . . . . 5 (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) ∈ V
3319, 31, 32fvmpt 6807 . . . 4 (𝑋𝑉 → (𝐺𝑋) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
34 dfsbcq 3689 . . . 4 ((𝐺𝑋) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) → ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
359, 33, 343syl 18 . . 3 (𝜑 → ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
3616, 35mpbird 260 . 2 (𝜑[(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
37 fvex 6719 . . 3 (𝐺𝑋) ∈ V
38 oveq1 7209 . . . . . 6 (𝑙 = (𝐺𝑋) → (𝑙 · 𝑍) = ((𝐺𝑋) · 𝑍))
3938oveq2d 7218 . . . . 5 (𝑙 = (𝐺𝑋) → (𝑧 + (𝑙 · 𝑍)) = (𝑧 + ((𝐺𝑋) · 𝑍)))
4039eqeq2d 2745 . . . 4 (𝑙 = (𝐺𝑋) → (𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍))))
4140rexbidv 3209 . . 3 (𝑙 = (𝐺𝑋) → (∃𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍))))
4237, 41sbcie 3730 . 2 ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
4336, 42sylib 221 1 (𝜑 → ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110  wrex 3055  ∃!wreu 3056  [wsbc 3687  {csn 4531  cmpt 5124  cfv 6369  crio 7158  (class class class)co 7202  Basecbs 16684  +gcplusg 16767  Scalarcsca 16770   ·𝑠 cvsca 16771  0gc0g 16916  LSSumclsm 18995  LSpanclspn 19980  LVecclvec 20111  LSHypclsh 36683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-0g 16918  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-grp 18340  df-minusg 18341  df-sbg 18342  df-subg 18512  df-cntz 18683  df-lsm 18997  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-invr 19662  df-drng 19741  df-lmod 19873  df-lss 19941  df-lsp 19981  df-lvec 20112  df-lshyp 36685
This theorem is referenced by:  lshpkrlem6  36823
  Copyright terms: Public domain W3C validator