Step | Hyp | Ref
| Expression |
1 | | lshpkrlem.v |
. . . . 5
β’ π = (Baseβπ) |
2 | | lshpkrlem.a |
. . . . 5
β’ + =
(+gβπ) |
3 | | lshpkrlem.n |
. . . . 5
β’ π = (LSpanβπ) |
4 | | lshpkrlem.p |
. . . . 5
β’ β =
(LSSumβπ) |
5 | | lshpkrlem.h |
. . . . 5
β’ π» = (LSHypβπ) |
6 | | lshpkrlem.w |
. . . . 5
β’ (π β π β LVec) |
7 | | lshpkrlem.u |
. . . . 5
β’ (π β π β π») |
8 | | lshpkrlem.z |
. . . . 5
β’ (π β π β π) |
9 | | lshpkrlem.x |
. . . . 5
β’ (π β π β π) |
10 | | lshpkrlem.e |
. . . . 5
β’ (π β (π β (πβ{π})) = π) |
11 | | lshpkrlem.d |
. . . . 5
β’ π· = (Scalarβπ) |
12 | | lshpkrlem.k |
. . . . 5
β’ πΎ = (Baseβπ·) |
13 | | lshpkrlem.t |
. . . . 5
β’ Β· = (
Β·π βπ) |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 | lshpsmreu 37967 |
. . . 4
β’ (π β β!π β πΎ βπ§ β π π = (π§ + (π Β· π))) |
15 | | riotasbc 7380 |
. . . 4
β’
(β!π β
πΎ βπ§ β π π = (π§ + (π Β· π)) β [(β©π β πΎ βπ§ β π π = (π§ + (π Β· π))) / π]βπ§ β π π = (π§ + (π Β· π))) |
16 | 14, 15 | syl 17 |
. . 3
β’ (π β
[(β©π
β πΎ βπ§ β π π = (π§ + (π Β· π))) / π]βπ§ β π π = (π§ + (π Β· π))) |
17 | | eqeq1 2736 |
. . . . . . 7
β’ (π₯ = π β (π₯ = (π§ + (π Β· π)) β π = (π§ + (π Β· π)))) |
18 | 17 | rexbidv 3178 |
. . . . . 6
β’ (π₯ = π β (βπ§ β π π₯ = (π§ + (π Β· π)) β βπ§ β π π = (π§ + (π Β· π)))) |
19 | 18 | riotabidv 7363 |
. . . . 5
β’ (π₯ = π β (β©π β πΎ βπ§ β π π₯ = (π§ + (π Β· π))) = (β©π β πΎ βπ§ β π π = (π§ + (π Β· π)))) |
20 | | lshpkrlem.g |
. . . . . 6
β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) |
21 | | oveq1 7412 |
. . . . . . . . . . . 12
β’ (π = π β (π Β· π) = (π Β· π)) |
22 | 21 | oveq2d 7421 |
. . . . . . . . . . 11
β’ (π = π β (π¦ + (π Β· π)) = (π¦ + (π Β· π))) |
23 | 22 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π = π β (π₯ = (π¦ + (π Β· π)) β π₯ = (π¦ + (π Β· π)))) |
24 | 23 | rexbidv 3178 |
. . . . . . . . 9
β’ (π = π β (βπ¦ β π π₯ = (π¦ + (π Β· π)) β βπ¦ β π π₯ = (π¦ + (π Β· π)))) |
25 | | oveq1 7412 |
. . . . . . . . . . 11
β’ (π¦ = π§ β (π¦ + (π Β· π)) = (π§ + (π Β· π))) |
26 | 25 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π¦ = π§ β (π₯ = (π¦ + (π Β· π)) β π₯ = (π§ + (π Β· π)))) |
27 | 26 | cbvrexvw 3235 |
. . . . . . . . 9
β’
(βπ¦ β
π π₯ = (π¦ + (π Β· π)) β βπ§ β π π₯ = (π§ + (π Β· π))) |
28 | 24, 27 | bitrdi 286 |
. . . . . . . 8
β’ (π = π β (βπ¦ β π π₯ = (π¦ + (π Β· π)) β βπ§ β π π₯ = (π§ + (π Β· π)))) |
29 | 28 | cbvriotavw 7371 |
. . . . . . 7
β’
(β©π
β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π))) = (β©π β πΎ βπ§ β π π₯ = (π§ + (π Β· π))) |
30 | 29 | mpteq2i 5252 |
. . . . . 6
β’ (π₯ β π β¦ (β©π β πΎ βπ¦ β π π₯ = (π¦ + (π Β· π)))) = (π₯ β π β¦ (β©π β πΎ βπ§ β π π₯ = (π§ + (π Β· π)))) |
31 | 20, 30 | eqtri 2760 |
. . . . 5
β’ πΊ = (π₯ β π β¦ (β©π β πΎ βπ§ β π π₯ = (π§ + (π Β· π)))) |
32 | | riotaex 7365 |
. . . . 5
β’
(β©π
β πΎ βπ§ β π π = (π§ + (π Β· π))) β V |
33 | 19, 31, 32 | fvmpt 6995 |
. . . 4
β’ (π β π β (πΊβπ) = (β©π β πΎ βπ§ β π π = (π§ + (π Β· π)))) |
34 | | dfsbcq 3778 |
. . . 4
β’ ((πΊβπ) = (β©π β πΎ βπ§ β π π = (π§ + (π Β· π))) β ([(πΊβπ) / π]βπ§ β π π = (π§ + (π Β· π)) β [(β©π β πΎ βπ§ β π π = (π§ + (π Β· π))) / π]βπ§ β π π = (π§ + (π Β· π)))) |
35 | 9, 33, 34 | 3syl 18 |
. . 3
β’ (π β ([(πΊβπ) / π]βπ§ β π π = (π§ + (π Β· π)) β [(β©π β πΎ βπ§ β π π = (π§ + (π Β· π))) / π]βπ§ β π π = (π§ + (π Β· π)))) |
36 | 16, 35 | mpbird 256 |
. 2
β’ (π β [(πΊβπ) / π]βπ§ β π π = (π§ + (π Β· π))) |
37 | | fvex 6901 |
. . 3
β’ (πΊβπ) β V |
38 | | oveq1 7412 |
. . . . . 6
β’ (π = (πΊβπ) β (π Β· π) = ((πΊβπ) Β· π)) |
39 | 38 | oveq2d 7421 |
. . . . 5
β’ (π = (πΊβπ) β (π§ + (π Β· π)) = (π§ + ((πΊβπ) Β· π))) |
40 | 39 | eqeq2d 2743 |
. . . 4
β’ (π = (πΊβπ) β (π = (π§ + (π Β· π)) β π = (π§ + ((πΊβπ) Β· π)))) |
41 | 40 | rexbidv 3178 |
. . 3
β’ (π = (πΊβπ) β (βπ§ β π π = (π§ + (π Β· π)) β βπ§ β π π = (π§ + ((πΊβπ) Β· π)))) |
42 | 37, 41 | sbcie 3819 |
. 2
β’
([(πΊβπ) / π]βπ§ β π π = (π§ + (π Β· π)) β βπ§ β π π = (π§ + ((πΊβπ) Β· π))) |
43 | 36, 42 | sylib 217 |
1
β’ (π β βπ§ β π π = (π§ + ((πΊβπ) Β· π))) |