Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem3 Structured version   Visualization version   GIF version

Theorem lshpkrlem3 36401
 Description: Lemma for lshpkrex 36407. Defining property of 𝐺‘𝑋. (Contributed by NM, 15-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem3 (𝜑 → ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑧, +   𝑧,𝐺   𝑧,𝑈   𝑧,𝑋   𝑧,𝑍,𝑘,𝑥,𝑦   𝑧, ·
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑘)   𝐷(𝑥,𝑦,𝑧,𝑘)   (𝑥,𝑦,𝑧,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑧,𝑘)   𝐾(𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧,𝑘)   𝑉(𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   0 (𝑥,𝑦,𝑧)

Proof of Theorem lshpkrlem3
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . . . 5 𝑉 = (Base‘𝑊)
2 lshpkrlem.a . . . . 5 + = (+g𝑊)
3 lshpkrlem.n . . . . 5 𝑁 = (LSpan‘𝑊)
4 lshpkrlem.p . . . . 5 = (LSSum‘𝑊)
5 lshpkrlem.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lshpkrlem.w . . . . 5 (𝜑𝑊 ∈ LVec)
7 lshpkrlem.u . . . . 5 (𝜑𝑈𝐻)
8 lshpkrlem.z . . . . 5 (𝜑𝑍𝑉)
9 lshpkrlem.x . . . . 5 (𝜑𝑋𝑉)
10 lshpkrlem.e . . . . 5 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
11 lshpkrlem.d . . . . 5 𝐷 = (Scalar‘𝑊)
12 lshpkrlem.k . . . . 5 𝐾 = (Base‘𝐷)
13 lshpkrlem.t . . . . 5 · = ( ·𝑠𝑊)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lshpsmreu 36398 . . . 4 (𝜑 → ∃!𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
15 riotasbc 7115 . . . 4 (∃!𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) → [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
1614, 15syl 17 . . 3 (𝜑[(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
17 eqeq1 2805 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + (𝑙 · 𝑍))))
1817rexbidv 3259 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
1918riotabidv 7099 . . . . 5 (𝑥 = 𝑋 → (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
20 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
21 oveq1 7146 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘 · 𝑍) = (𝑙 · 𝑍))
2221oveq2d 7155 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑍)) = (𝑦 + (𝑙 · 𝑍)))
2322eqeq2d 2812 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑥 = (𝑦 + (𝑙 · 𝑍))))
2423rexbidv 3259 . . . . . . . . 9 (𝑘 = 𝑙 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍))))
25 oveq1 7146 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 + (𝑙 · 𝑍)) = (𝑧 + (𝑙 · 𝑍)))
2625eqeq2d 2812 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ 𝑥 = (𝑧 + (𝑙 · 𝑍))))
2726cbvrexvw 3400 . . . . . . . . 9 (∃𝑦𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))
2824, 27syl6bb 290 . . . . . . . 8 (𝑘 = 𝑙 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
2928cbvriotavw 7107 . . . . . . 7 (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))
3029mpteq2i 5125 . . . . . 6 (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑥𝑉 ↦ (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
3120, 30eqtri 2824 . . . . 5 𝐺 = (𝑥𝑉 ↦ (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
32 riotaex 7101 . . . . 5 (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) ∈ V
3319, 31, 32fvmpt 6749 . . . 4 (𝑋𝑉 → (𝐺𝑋) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
34 dfsbcq 3725 . . . 4 ((𝐺𝑋) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) → ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
359, 33, 343syl 18 . . 3 (𝜑 → ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
3616, 35mpbird 260 . 2 (𝜑[(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
37 fvex 6662 . . 3 (𝐺𝑋) ∈ V
38 oveq1 7146 . . . . . 6 (𝑙 = (𝐺𝑋) → (𝑙 · 𝑍) = ((𝐺𝑋) · 𝑍))
3938oveq2d 7155 . . . . 5 (𝑙 = (𝐺𝑋) → (𝑧 + (𝑙 · 𝑍)) = (𝑧 + ((𝐺𝑋) · 𝑍)))
4039eqeq2d 2812 . . . 4 (𝑙 = (𝐺𝑋) → (𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍))))
4140rexbidv 3259 . . 3 (𝑙 = (𝐺𝑋) → (∃𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍))))
4237, 41sbcie 3763 . 2 ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
4336, 42sylib 221 1 (𝜑 → ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2112  ∃wrex 3110  ∃!wreu 3111  [wsbc 3723  {csn 4528   ↦ cmpt 5113  ‘cfv 6328  ℩crio 7096  (class class class)co 7139  Basecbs 16478  +gcplusg 16560  Scalarcsca 16563   ·𝑠 cvsca 16564  0gc0g 16708  LSSumclsm 18754  LSpanclspn 19739  LVecclvec 19870  LSHypclsh 36264 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-cntz 18442  df-lsm 18756  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-drng 19500  df-lmod 19632  df-lss 19700  df-lsp 19740  df-lvec 19871  df-lshyp 36266 This theorem is referenced by:  lshpkrlem6  36404
 Copyright terms: Public domain W3C validator