| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for lshpkrex 39216. Defining property of 𝐺‘𝑋. (Contributed by NM, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshpkrlem.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpkrlem.a | ⊢ + = (+g‘𝑊) |
| lshpkrlem.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lshpkrlem.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lshpkrlem.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpkrlem.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lshpkrlem.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| lshpkrlem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| lshpkrlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lshpkrlem.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| lshpkrlem.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lshpkrlem.k | ⊢ 𝐾 = (Base‘𝐷) |
| lshpkrlem.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lshpkrlem.o | ⊢ 0 = (0g‘𝐷) |
| lshpkrlem.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
| Ref | Expression |
|---|---|
| lshpkrlem3 | ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpkrlem.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lshpkrlem.a | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 3 | lshpkrlem.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | lshpkrlem.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
| 5 | lshpkrlem.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 6 | lshpkrlem.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | lshpkrlem.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
| 8 | lshpkrlem.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 9 | lshpkrlem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 10 | lshpkrlem.e | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
| 11 | lshpkrlem.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 12 | lshpkrlem.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐷) | |
| 13 | lshpkrlem.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | lshpsmreu 39207 | . . . 4 ⊢ (𝜑 → ∃!𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) |
| 15 | riotasbc 7321 | . . . 4 ⊢ (∃!𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) → [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) |
| 17 | eqeq1 2735 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + (𝑙 · 𝑍)))) | |
| 18 | 17 | rexbidv 3156 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
| 19 | 18 | riotabidv 7305 | . . . . 5 ⊢ (𝑥 = 𝑋 → (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
| 20 | lshpkrlem.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
| 21 | oveq1 7353 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑙 → (𝑘 · 𝑍) = (𝑙 · 𝑍)) | |
| 22 | 21 | oveq2d 7362 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑍)) = (𝑦 + (𝑙 · 𝑍))) |
| 23 | 22 | eqeq2d 2742 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑙 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑥 = (𝑦 + (𝑙 · 𝑍)))) |
| 24 | 23 | rexbidv 3156 | . . . . . . . . 9 ⊢ (𝑘 = 𝑙 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)))) |
| 25 | oveq1 7353 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑧 → (𝑦 + (𝑙 · 𝑍)) = (𝑧 + (𝑙 · 𝑍))) | |
| 26 | 25 | eqeq2d 2742 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑧 → (𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
| 27 | 26 | cbvrexvw 3211 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) |
| 28 | 24, 27 | bitrdi 287 | . . . . . . . 8 ⊢ (𝑘 = 𝑙 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
| 29 | 28 | cbvriotavw 7313 | . . . . . . 7 ⊢ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) |
| 30 | 29 | mpteq2i 5185 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑥 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
| 31 | 20, 30 | eqtri 2754 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
| 32 | riotaex 7307 | . . . . 5 ⊢ (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) ∈ V | |
| 33 | 19, 31, 32 | fvmpt 6929 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝐺‘𝑋) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
| 34 | dfsbcq 3738 | . . . 4 ⊢ ((𝐺‘𝑋) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) → ([(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) | |
| 35 | 9, 33, 34 | 3syl 18 | . . 3 ⊢ (𝜑 → ([(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
| 36 | 16, 35 | mpbird 257 | . 2 ⊢ (𝜑 → [(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) |
| 37 | fvex 6835 | . . 3 ⊢ (𝐺‘𝑋) ∈ V | |
| 38 | oveq1 7353 | . . . . . 6 ⊢ (𝑙 = (𝐺‘𝑋) → (𝑙 · 𝑍) = ((𝐺‘𝑋) · 𝑍)) | |
| 39 | 38 | oveq2d 7362 | . . . . 5 ⊢ (𝑙 = (𝐺‘𝑋) → (𝑧 + (𝑙 · 𝑍)) = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
| 40 | 39 | eqeq2d 2742 | . . . 4 ⊢ (𝑙 = (𝐺‘𝑋) → (𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍)))) |
| 41 | 40 | rexbidv 3156 | . . 3 ⊢ (𝑙 = (𝐺‘𝑋) → (∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍)))) |
| 42 | 37, 41 | sbcie 3778 | . 2 ⊢ ([(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
| 43 | 36, 42 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∃!wreu 3344 [wsbc 3736 {csn 4573 ↦ cmpt 5170 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 LSSumclsm 19546 LSpanclspn 20904 LVecclvec 21036 LSHypclsh 39073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lshyp 39075 |
| This theorem is referenced by: lshpkrlem6 39213 |
| Copyright terms: Public domain | W3C validator |