![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrlem3 | Structured version Visualization version GIF version |
Description: Lemma for lshpkrex 37791. Defining property of 𝐺‘𝑋. (Contributed by NM, 15-Jul-2014.) |
Ref | Expression |
---|---|
lshpkrlem.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpkrlem.a | ⊢ + = (+g‘𝑊) |
lshpkrlem.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpkrlem.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpkrlem.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkrlem.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpkrlem.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpkrlem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lshpkrlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lshpkrlem.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
lshpkrlem.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpkrlem.k | ⊢ 𝐾 = (Base‘𝐷) |
lshpkrlem.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lshpkrlem.o | ⊢ 0 = (0g‘𝐷) |
lshpkrlem.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
Ref | Expression |
---|---|
lshpkrlem3 | ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkrlem.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpkrlem.a | . . . . 5 ⊢ + = (+g‘𝑊) | |
3 | lshpkrlem.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lshpkrlem.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
5 | lshpkrlem.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
6 | lshpkrlem.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | lshpkrlem.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
8 | lshpkrlem.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
9 | lshpkrlem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | lshpkrlem.e | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
11 | lshpkrlem.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
12 | lshpkrlem.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐷) | |
13 | lshpkrlem.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | lshpsmreu 37782 | . . . 4 ⊢ (𝜑 → ∃!𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) |
15 | riotasbc 7368 | . . . 4 ⊢ (∃!𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) → [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) |
17 | eqeq1 2735 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + (𝑙 · 𝑍)))) | |
18 | 17 | rexbidv 3177 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
19 | 18 | riotabidv 7351 | . . . . 5 ⊢ (𝑥 = 𝑋 → (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
20 | lshpkrlem.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
21 | oveq1 7400 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑙 → (𝑘 · 𝑍) = (𝑙 · 𝑍)) | |
22 | 21 | oveq2d 7409 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑍)) = (𝑦 + (𝑙 · 𝑍))) |
23 | 22 | eqeq2d 2742 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑙 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑥 = (𝑦 + (𝑙 · 𝑍)))) |
24 | 23 | rexbidv 3177 | . . . . . . . . 9 ⊢ (𝑘 = 𝑙 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)))) |
25 | oveq1 7400 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑧 → (𝑦 + (𝑙 · 𝑍)) = (𝑧 + (𝑙 · 𝑍))) | |
26 | 25 | eqeq2d 2742 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑧 → (𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
27 | 26 | cbvrexvw 3234 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) |
28 | 24, 27 | bitrdi 286 | . . . . . . . 8 ⊢ (𝑘 = 𝑙 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
29 | 28 | cbvriotavw 7359 | . . . . . . 7 ⊢ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) |
30 | 29 | mpteq2i 5246 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑥 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
31 | 20, 30 | eqtri 2759 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
32 | riotaex 7353 | . . . . 5 ⊢ (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) ∈ V | |
33 | 19, 31, 32 | fvmpt 6984 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝐺‘𝑋) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
34 | dfsbcq 3775 | . . . 4 ⊢ ((𝐺‘𝑋) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) → ([(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) | |
35 | 9, 33, 34 | 3syl 18 | . . 3 ⊢ (𝜑 → ([(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
36 | 16, 35 | mpbird 256 | . 2 ⊢ (𝜑 → [(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) |
37 | fvex 6891 | . . 3 ⊢ (𝐺‘𝑋) ∈ V | |
38 | oveq1 7400 | . . . . . 6 ⊢ (𝑙 = (𝐺‘𝑋) → (𝑙 · 𝑍) = ((𝐺‘𝑋) · 𝑍)) | |
39 | 38 | oveq2d 7409 | . . . . 5 ⊢ (𝑙 = (𝐺‘𝑋) → (𝑧 + (𝑙 · 𝑍)) = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
40 | 39 | eqeq2d 2742 | . . . 4 ⊢ (𝑙 = (𝐺‘𝑋) → (𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍)))) |
41 | 40 | rexbidv 3177 | . . 3 ⊢ (𝑙 = (𝐺‘𝑋) → (∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍)))) |
42 | 37, 41 | sbcie 3816 | . 2 ⊢ ([(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
43 | 36, 42 | sylib 217 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3069 ∃!wreu 3373 [wsbc 3773 {csn 4622 ↦ cmpt 5224 ‘cfv 6532 ℩crio 7348 (class class class)co 7393 Basecbs 17126 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 0gc0g 17367 LSSumclsm 19466 LSpanclspn 20531 LVecclvec 20662 LSHypclsh 37648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-tpos 8193 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-submnd 18648 df-grp 18797 df-minusg 18798 df-sbg 18799 df-subg 18975 df-cntz 19147 df-lsm 19468 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-oppr 20102 df-dvdsr 20123 df-unit 20124 df-invr 20154 df-drng 20267 df-lmod 20422 df-lss 20492 df-lsp 20532 df-lvec 20663 df-lshyp 37650 |
This theorem is referenced by: lshpkrlem6 37788 |
Copyright terms: Public domain | W3C validator |