Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem3 Structured version   Visualization version   GIF version

Theorem lshpkrlem3 39098
Description: Lemma for lshpkrex 39104. Defining property of 𝐺𝑋. (Contributed by NM, 15-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem3 (𝜑 → ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑧, +   𝑧,𝐺   𝑧,𝑈   𝑧,𝑋   𝑧,𝑍,𝑘,𝑥,𝑦   𝑧, ·
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑘)   𝐷(𝑥,𝑦,𝑧,𝑘)   (𝑥,𝑦,𝑧,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑧,𝑘)   𝐾(𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧,𝑘)   𝑉(𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   0 (𝑥,𝑦,𝑧)

Proof of Theorem lshpkrlem3
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . . . 5 𝑉 = (Base‘𝑊)
2 lshpkrlem.a . . . . 5 + = (+g𝑊)
3 lshpkrlem.n . . . . 5 𝑁 = (LSpan‘𝑊)
4 lshpkrlem.p . . . . 5 = (LSSum‘𝑊)
5 lshpkrlem.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lshpkrlem.w . . . . 5 (𝜑𝑊 ∈ LVec)
7 lshpkrlem.u . . . . 5 (𝜑𝑈𝐻)
8 lshpkrlem.z . . . . 5 (𝜑𝑍𝑉)
9 lshpkrlem.x . . . . 5 (𝜑𝑋𝑉)
10 lshpkrlem.e . . . . 5 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
11 lshpkrlem.d . . . . 5 𝐷 = (Scalar‘𝑊)
12 lshpkrlem.k . . . . 5 𝐾 = (Base‘𝐷)
13 lshpkrlem.t . . . . 5 · = ( ·𝑠𝑊)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lshpsmreu 39095 . . . 4 (𝜑 → ∃!𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
15 riotasbc 7344 . . . 4 (∃!𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) → [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
1614, 15syl 17 . . 3 (𝜑[(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
17 eqeq1 2733 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + (𝑙 · 𝑍))))
1817rexbidv 3157 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
1918riotabidv 7328 . . . . 5 (𝑥 = 𝑋 → (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
20 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
21 oveq1 7376 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘 · 𝑍) = (𝑙 · 𝑍))
2221oveq2d 7385 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑍)) = (𝑦 + (𝑙 · 𝑍)))
2322eqeq2d 2740 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑥 = (𝑦 + (𝑙 · 𝑍))))
2423rexbidv 3157 . . . . . . . . 9 (𝑘 = 𝑙 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍))))
25 oveq1 7376 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 + (𝑙 · 𝑍)) = (𝑧 + (𝑙 · 𝑍)))
2625eqeq2d 2740 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ 𝑥 = (𝑧 + (𝑙 · 𝑍))))
2726cbvrexvw 3214 . . . . . . . . 9 (∃𝑦𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))
2824, 27bitrdi 287 . . . . . . . 8 (𝑘 = 𝑙 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
2928cbvriotavw 7336 . . . . . . 7 (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))
3029mpteq2i 5198 . . . . . 6 (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑥𝑉 ↦ (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
3120, 30eqtri 2752 . . . . 5 𝐺 = (𝑥𝑉 ↦ (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
32 riotaex 7330 . . . . 5 (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) ∈ V
3319, 31, 32fvmpt 6950 . . . 4 (𝑋𝑉 → (𝐺𝑋) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
34 dfsbcq 3752 . . . 4 ((𝐺𝑋) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) → ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
359, 33, 343syl 18 . . 3 (𝜑 → ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
3616, 35mpbird 257 . 2 (𝜑[(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
37 fvex 6853 . . 3 (𝐺𝑋) ∈ V
38 oveq1 7376 . . . . . 6 (𝑙 = (𝐺𝑋) → (𝑙 · 𝑍) = ((𝐺𝑋) · 𝑍))
3938oveq2d 7385 . . . . 5 (𝑙 = (𝐺𝑋) → (𝑧 + (𝑙 · 𝑍)) = (𝑧 + ((𝐺𝑋) · 𝑍)))
4039eqeq2d 2740 . . . 4 (𝑙 = (𝐺𝑋) → (𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍))))
4140rexbidv 3157 . . 3 (𝑙 = (𝐺𝑋) → (∃𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍))))
4237, 41sbcie 3792 . 2 ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
4336, 42sylib 218 1 (𝜑 → ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  ∃!wreu 3349  [wsbc 3750  {csn 4585  cmpt 5183  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  LSSumclsm 19548  LSpanclspn 20909  LVecclvec 21041  LSHypclsh 38961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-cntz 19231  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20651  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lvec 21042  df-lshyp 38963
This theorem is referenced by:  lshpkrlem6  39101
  Copyright terms: Public domain W3C validator