Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem3 Structured version   Visualization version   GIF version

Theorem lshpkrlem3 35268
Description: Lemma for lshpkrex 35274. Defining property of 𝐺𝑋. (Contributed by NM, 15-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem3 (𝜑 → ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑧, +   𝑧,𝐺   𝑧,𝑈   𝑧,𝑋   𝑧,𝑍,𝑘,𝑥,𝑦   𝑧, ·
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑘)   𝐷(𝑥,𝑦,𝑧,𝑘)   (𝑥,𝑦,𝑧,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑧,𝑘)   𝐾(𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧,𝑘)   𝑉(𝑦,𝑧,𝑘)   𝑊(𝑥,𝑦,𝑧,𝑘)   0 (𝑥,𝑦,𝑧)

Proof of Theorem lshpkrlem3
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 lshpkrlem.v . . . . 5 𝑉 = (Base‘𝑊)
2 lshpkrlem.a . . . . 5 + = (+g𝑊)
3 lshpkrlem.n . . . . 5 𝑁 = (LSpan‘𝑊)
4 lshpkrlem.p . . . . 5 = (LSSum‘𝑊)
5 lshpkrlem.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lshpkrlem.w . . . . 5 (𝜑𝑊 ∈ LVec)
7 lshpkrlem.u . . . . 5 (𝜑𝑈𝐻)
8 lshpkrlem.z . . . . 5 (𝜑𝑍𝑉)
9 lshpkrlem.x . . . . 5 (𝜑𝑋𝑉)
10 lshpkrlem.e . . . . 5 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
11 lshpkrlem.d . . . . 5 𝐷 = (Scalar‘𝑊)
12 lshpkrlem.k . . . . 5 𝐾 = (Base‘𝐷)
13 lshpkrlem.t . . . . 5 · = ( ·𝑠𝑊)
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lshpsmreu 35265 . . . 4 (𝜑 → ∃!𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
15 riotasbc 6898 . . . 4 (∃!𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) → [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
1614, 15syl 17 . . 3 (𝜑[(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
17 eqeq1 2782 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + (𝑙 · 𝑍))))
1817rexbidv 3237 . . . . . 6 (𝑥 = 𝑋 → (∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
1918riotabidv 6885 . . . . 5 (𝑥 = 𝑋 → (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
20 lshpkrlem.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
21 oveq1 6929 . . . . . . . . . . . 12 (𝑘 = 𝑙 → (𝑘 · 𝑍) = (𝑙 · 𝑍))
2221oveq2d 6938 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑍)) = (𝑦 + (𝑙 · 𝑍)))
2322eqeq2d 2788 . . . . . . . . . 10 (𝑘 = 𝑙 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑥 = (𝑦 + (𝑙 · 𝑍))))
2423rexbidv 3237 . . . . . . . . 9 (𝑘 = 𝑙 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍))))
25 oveq1 6929 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑦 + (𝑙 · 𝑍)) = (𝑧 + (𝑙 · 𝑍)))
2625eqeq2d 2788 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ 𝑥 = (𝑧 + (𝑙 · 𝑍))))
2726cbvrexv 3368 . . . . . . . . 9 (∃𝑦𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))
2824, 27syl6bb 279 . . . . . . . 8 (𝑘 = 𝑙 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
2928cbvriotav 6894 . . . . . . 7 (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))
3029mpteq2i 4976 . . . . . 6 (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑥𝑉 ↦ (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
3120, 30eqtri 2802 . . . . 5 𝐺 = (𝑥𝑉 ↦ (𝑙𝐾𝑧𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))))
32 riotaex 6887 . . . . 5 (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) ∈ V
3319, 31, 32fvmpt 6542 . . . 4 (𝑋𝑉 → (𝐺𝑋) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
34 dfsbcq 3654 . . . 4 ((𝐺𝑋) = (𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) → ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
359, 33, 343syl 18 . . 3 (𝜑 → ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(𝑙𝐾𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))))
3616, 35mpbird 249 . 2 (𝜑[(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))
37 fvex 6459 . . 3 (𝐺𝑋) ∈ V
38 oveq1 6929 . . . . . 6 (𝑙 = (𝐺𝑋) → (𝑙 · 𝑍) = ((𝐺𝑋) · 𝑍))
3938oveq2d 6938 . . . . 5 (𝑙 = (𝐺𝑋) → (𝑧 + (𝑙 · 𝑍)) = (𝑧 + ((𝐺𝑋) · 𝑍)))
4039eqeq2d 2788 . . . 4 (𝑙 = (𝐺𝑋) → (𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍))))
4140rexbidv 3237 . . 3 (𝑙 = (𝐺𝑋) → (∃𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍))))
4237, 41sbcie 3687 . 2 ([(𝐺𝑋) / 𝑙]𝑧𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
4336, 42sylib 210 1 (𝜑 → ∃𝑧𝑈 𝑋 = (𝑧 + ((𝐺𝑋) · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1601  wcel 2107  wrex 3091  ∃!wreu 3092  [wsbc 3652  {csn 4398  cmpt 4965  cfv 6135  crio 6882  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  Scalarcsca 16341   ·𝑠 cvsca 16342  0gc0g 16486  LSSumclsm 18433  LSpanclspn 19366  LVecclvec 19497  LSHypclsh 35131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-cntz 18133  df-lsm 18435  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-drng 19141  df-lmod 19257  df-lss 19325  df-lsp 19367  df-lvec 19498  df-lshyp 35133
This theorem is referenced by:  lshpkrlem6  35271
  Copyright terms: Public domain W3C validator