| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for lshpkrex 39141. Defining property of 𝐺‘𝑋. (Contributed by NM, 15-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshpkrlem.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpkrlem.a | ⊢ + = (+g‘𝑊) |
| lshpkrlem.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lshpkrlem.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lshpkrlem.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpkrlem.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lshpkrlem.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| lshpkrlem.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| lshpkrlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lshpkrlem.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| lshpkrlem.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lshpkrlem.k | ⊢ 𝐾 = (Base‘𝐷) |
| lshpkrlem.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lshpkrlem.o | ⊢ 0 = (0g‘𝐷) |
| lshpkrlem.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
| Ref | Expression |
|---|---|
| lshpkrlem3 | ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpkrlem.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | lshpkrlem.a | . . . . 5 ⊢ + = (+g‘𝑊) | |
| 3 | lshpkrlem.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | lshpkrlem.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
| 5 | lshpkrlem.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 6 | lshpkrlem.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | lshpkrlem.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
| 8 | lshpkrlem.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 9 | lshpkrlem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 10 | lshpkrlem.e | . . . . 5 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
| 11 | lshpkrlem.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 12 | lshpkrlem.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐷) | |
| 13 | lshpkrlem.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | lshpsmreu 39132 | . . . 4 ⊢ (𝜑 → ∃!𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) |
| 15 | riotasbc 7385 | . . . 4 ⊢ (∃!𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) → [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) |
| 17 | eqeq1 2740 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + (𝑙 · 𝑍)))) | |
| 18 | 17 | rexbidv 3165 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
| 19 | 18 | riotabidv 7369 | . . . . 5 ⊢ (𝑥 = 𝑋 → (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
| 20 | lshpkrlem.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
| 21 | oveq1 7417 | . . . . . . . . . . . 12 ⊢ (𝑘 = 𝑙 → (𝑘 · 𝑍) = (𝑙 · 𝑍)) | |
| 22 | 21 | oveq2d 7426 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑙 → (𝑦 + (𝑘 · 𝑍)) = (𝑦 + (𝑙 · 𝑍))) |
| 23 | 22 | eqeq2d 2747 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑙 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑥 = (𝑦 + (𝑙 · 𝑍)))) |
| 24 | 23 | rexbidv 3165 | . . . . . . . . 9 ⊢ (𝑘 = 𝑙 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)))) |
| 25 | oveq1 7417 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑧 → (𝑦 + (𝑙 · 𝑍)) = (𝑧 + (𝑙 · 𝑍))) | |
| 26 | 25 | eqeq2d 2747 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑧 → (𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
| 27 | 26 | cbvrexvw 3225 | . . . . . . . . 9 ⊢ (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) |
| 28 | 24, 27 | bitrdi 287 | . . . . . . . 8 ⊢ (𝑘 = 𝑙 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
| 29 | 28 | cbvriotavw 7377 | . . . . . . 7 ⊢ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍))) |
| 30 | 29 | mpteq2i 5222 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑥 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
| 31 | 20, 30 | eqtri 2759 | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑥 = (𝑧 + (𝑙 · 𝑍)))) |
| 32 | riotaex 7371 | . . . . 5 ⊢ (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) ∈ V | |
| 33 | 19, 31, 32 | fvmpt 6991 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (𝐺‘𝑋) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
| 34 | dfsbcq 3772 | . . . 4 ⊢ ((𝐺‘𝑋) = (℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) → ([(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) | |
| 35 | 9, 33, 34 | 3syl 18 | . . 3 ⊢ (𝜑 → ([(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ [(℩𝑙 ∈ 𝐾 ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)))) |
| 36 | 16, 35 | mpbird 257 | . 2 ⊢ (𝜑 → [(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍))) |
| 37 | fvex 6894 | . . 3 ⊢ (𝐺‘𝑋) ∈ V | |
| 38 | oveq1 7417 | . . . . . 6 ⊢ (𝑙 = (𝐺‘𝑋) → (𝑙 · 𝑍) = ((𝐺‘𝑋) · 𝑍)) | |
| 39 | 38 | oveq2d 7426 | . . . . 5 ⊢ (𝑙 = (𝐺‘𝑋) → (𝑧 + (𝑙 · 𝑍)) = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
| 40 | 39 | eqeq2d 2747 | . . . 4 ⊢ (𝑙 = (𝐺‘𝑋) → (𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍)))) |
| 41 | 40 | rexbidv 3165 | . . 3 ⊢ (𝑙 = (𝐺‘𝑋) → (∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍)))) |
| 42 | 37, 41 | sbcie 3812 | . 2 ⊢ ([(𝐺‘𝑋) / 𝑙]∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + (𝑙 · 𝑍)) ↔ ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
| 43 | 36, 42 | sylib 218 | 1 ⊢ (𝜑 → ∃𝑧 ∈ 𝑈 𝑋 = (𝑧 + ((𝐺‘𝑋) · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∃!wreu 3362 [wsbc 3770 {csn 4606 ↦ cmpt 5206 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 ·𝑠 cvsca 17280 0gc0g 17458 LSSumclsm 19620 LSpanclspn 20933 LVecclvec 21065 LSHypclsh 38998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 df-lshyp 39000 |
| This theorem is referenced by: lshpkrlem6 39138 |
| Copyright terms: Public domain | W3C validator |