Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubeqsub Structured version   Visualization version   GIF version

Theorem resubeqsub 40411
Description: Equivalence between real subtraction and subtraction. (Contributed by SN, 5-May-2024.)
Assertion
Ref Expression
resubeqsub ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝐴𝐵))

Proof of Theorem resubeqsub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-resscn 10928 . . . 4 ℝ ⊆ ℂ
2 resubeu 40360 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
3 reurex 3362 . . . . 5 (∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴 → ∃𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
42, 3syl 17 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
5 recn 10961 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
6 recn 10961 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
7 sn-subeu 40408 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)
85, 6, 7syl2an 596 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)
9 riotass 7264 . . . 4 ((ℝ ⊆ ℂ ∧ ∃𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴) → (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
101, 4, 8, 9mp3an2i 1465 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
1110ancoms 459 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
12 resubval 40350 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴))
13 subval 11212 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
146, 5, 13syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵) = (𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴))
1511, 12, 143eqtr4d 2788 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 𝐵) = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  ∃!wreu 3066  wss 3887  crio 7231  (class class class)co 7275  cc 10869  cr 10870   + caddc 10874  cmin 11205   cresub 40348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-sub 11207  df-2 12036  df-3 12037  df-resub 40349
This theorem is referenced by:  subresre  40412
  Copyright terms: Public domain W3C validator