MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncoOLD Structured version   Visualization version   GIF version

Theorem rncoOLD 6205
Description: Obsolete version of rnco 6204 as of 24-Jan-2026. (Contributed by NM, 12-Dec-2006.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rncoOLD ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)

Proof of Theorem rncoOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3441 . . . . . 6 𝑥 ∈ V
2 vex 3441 . . . . . 6 𝑦 ∈ V
31, 2brco 5814 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
43exbii 1849 . . . 4 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 excom 2167 . . . 4 (∃𝑥𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦))
6 vex 3441 . . . . . . . 8 𝑧 ∈ V
76elrn 5837 . . . . . . 7 (𝑧 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑧)
87anbi1i 624 . . . . . 6 ((𝑧 ∈ ran 𝐵𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦))
92brresi 5941 . . . . . 6 (𝑧(𝐴 ↾ ran 𝐵)𝑦 ↔ (𝑧 ∈ ran 𝐵𝑧𝐴𝑦))
10 19.41v 1950 . . . . . 6 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ (∃𝑥 𝑥𝐵𝑧𝑧𝐴𝑦))
118, 9, 103bitr4ri 304 . . . . 5 (∃𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1211exbii 1849 . . . 4 (∃𝑧𝑥(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
134, 5, 123bitri 297 . . 3 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
142elrn 5837 . . 3 (𝑦 ∈ ran (𝐴𝐵) ↔ ∃𝑥 𝑥(𝐴𝐵)𝑦)
152elrn 5837 . . 3 (𝑦 ∈ ran (𝐴 ↾ ran 𝐵) ↔ ∃𝑧 𝑧(𝐴 ↾ ran 𝐵)𝑦)
1613, 14, 153bitr4i 303 . 2 (𝑦 ∈ ran (𝐴𝐵) ↔ 𝑦 ∈ ran (𝐴 ↾ ran 𝐵))
1716eqriv 2730 1 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2113   class class class wbr 5093  ran crn 5620  cres 5621  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator