![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnco2 | Structured version Visualization version GIF version |
Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
Ref | Expression |
---|---|
rnco2 | ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnco 5860 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
2 | df-ima 5325 | . 2 ⊢ (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
3 | 1, 2 | eqtr4i 2824 | 1 ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ran crn 5313 ↾ cres 5314 “ cima 5315 ∘ ccom 5316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 |
This theorem is referenced by: dmco 5862 isf34lem7 9489 isf34lem6 9490 imasless 16515 gsumzf1o 18628 gsumzmhm 18652 gsumzinv 18660 dprdf1o 18747 pf1rcl 20035 ovolficcss 23577 volsup 23664 uniiccdif 23686 uniioombllem3 23693 dyadmbl 23708 itg1climres 23822 cvmlift3lem6 31823 mblfinlem2 33936 volsupnfl 33943 |
Copyright terms: Public domain | W3C validator |