![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnco2 | Structured version Visualization version GIF version |
Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
Ref | Expression |
---|---|
rnco2 | ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnco 6283 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
2 | df-ima 5713 | . 2 ⊢ (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
3 | 1, 2 | eqtr4i 2771 | 1 ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ran crn 5701 ↾ cres 5702 “ cima 5703 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: dmco 6285 isf34lem7 10448 isf34lem6 10449 imasless 17600 gsumzf1o 19954 gsumzmhm 19979 gsumzinv 19987 dprdf1o 20076 pf1rcl 22374 ovolficcss 25523 volsup 25610 uniiccdif 25632 uniioombllem3 25639 dyadmbl 25654 itg1climres 25769 cvmlift3lem6 35292 mblfinlem2 37618 volsupnfl 37625 |
Copyright terms: Public domain | W3C validator |