| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnco2 | Structured version Visualization version GIF version | ||
| Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
| Ref | Expression |
|---|---|
| rnco2 | ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnco 6228 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 2 | df-ima 5654 | . 2 ⊢ (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 3 | 1, 2 | eqtr4i 2756 | 1 ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ran crn 5642 ↾ cres 5643 “ cima 5644 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: dmco 6230 isf34lem7 10339 isf34lem6 10340 imasless 17510 gsumzf1o 19849 gsumzmhm 19874 gsumzinv 19882 dprdf1o 19971 pf1rcl 22243 ovolficcss 25377 volsup 25464 uniiccdif 25486 uniioombllem3 25493 dyadmbl 25508 itg1climres 25622 cvmlift3lem6 35318 mblfinlem2 37659 volsupnfl 37666 |
| Copyright terms: Public domain | W3C validator |