Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnco2 | Structured version Visualization version GIF version |
Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
Ref | Expression |
---|---|
rnco2 | ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnco 6145 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
2 | df-ima 5593 | . 2 ⊢ (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ran crn 5581 ↾ cres 5582 “ cima 5583 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: dmco 6147 isf34lem7 10066 isf34lem6 10067 imasless 17168 gsumzf1o 19428 gsumzmhm 19453 gsumzinv 19461 dprdf1o 19550 pf1rcl 21425 ovolficcss 24538 volsup 24625 uniiccdif 24647 uniioombllem3 24654 dyadmbl 24669 itg1climres 24784 cvmlift3lem6 33186 mblfinlem2 35742 volsupnfl 35749 |
Copyright terms: Public domain | W3C validator |