| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnco2 | Structured version Visualization version GIF version | ||
| Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
| Ref | Expression |
|---|---|
| rnco2 | ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnco 6204 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 2 | df-ima 5632 | . 2 ⊢ (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 3 | 1, 2 | eqtr4i 2759 | 1 ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ran crn 5620 ↾ cres 5621 “ cima 5622 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: dmco 6207 isf34lem7 10277 isf34lem6 10278 imasless 17446 gsumzf1o 19826 gsumzmhm 19851 gsumzinv 19859 dprdf1o 19948 pf1rcl 22265 ovolficcss 25398 volsup 25485 uniiccdif 25507 uniioombllem3 25514 dyadmbl 25529 itg1climres 25643 cvmlift3lem6 35389 mblfinlem2 37718 volsupnfl 37725 |
| Copyright terms: Public domain | W3C validator |