| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnco2 | Structured version Visualization version GIF version | ||
| Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
| Ref | Expression |
|---|---|
| rnco2 | ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnco 6205 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 2 | df-ima 5636 | . 2 ⊢ (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ran crn 5624 ↾ cres 5625 “ cima 5626 ∘ ccom 5627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: dmco 6207 isf34lem7 10292 isf34lem6 10293 imasless 17462 gsumzf1o 19809 gsumzmhm 19834 gsumzinv 19842 dprdf1o 19931 pf1rcl 22252 ovolficcss 25386 volsup 25473 uniiccdif 25495 uniioombllem3 25502 dyadmbl 25517 itg1climres 25631 cvmlift3lem6 35296 mblfinlem2 37637 volsupnfl 37644 |
| Copyright terms: Public domain | W3C validator |