MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnco2 Structured version   Visualization version   GIF version

Theorem rnco2 5861
Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
rnco2 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)

Proof of Theorem rnco2
StepHypRef Expression
1 rnco 5860 . 2 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
2 df-ima 5325 . 2 (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵)
31, 2eqtr4i 2824 1 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  ran crn 5313  cres 5314  cima 5315  ccom 5316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-br 4844  df-opab 4906  df-xp 5318  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325
This theorem is referenced by:  dmco  5862  isf34lem7  9489  isf34lem6  9490  imasless  16515  gsumzf1o  18628  gsumzmhm  18652  gsumzinv  18660  dprdf1o  18747  pf1rcl  20035  ovolficcss  23577  volsup  23664  uniiccdif  23686  uniioombllem3  23693  dyadmbl  23708  itg1climres  23822  cvmlift3lem6  31823  mblfinlem2  33936  volsupnfl  33943
  Copyright terms: Public domain W3C validator