| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnco2 | Structured version Visualization version GIF version | ||
| Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
| Ref | Expression |
|---|---|
| rnco2 | ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnco 6199 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 2 | df-ima 5629 | . 2 ⊢ (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 3 | 1, 2 | eqtr4i 2757 | 1 ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ran crn 5617 ↾ cres 5618 “ cima 5619 ∘ ccom 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: dmco 6202 isf34lem7 10267 isf34lem6 10268 imasless 17441 gsumzf1o 19822 gsumzmhm 19847 gsumzinv 19855 dprdf1o 19944 pf1rcl 22262 ovolficcss 25395 volsup 25482 uniiccdif 25504 uniioombllem3 25511 dyadmbl 25526 itg1climres 25640 cvmlift3lem6 35356 mblfinlem2 37697 volsupnfl 37704 |
| Copyright terms: Public domain | W3C validator |