| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnco2 | Structured version Visualization version GIF version | ||
| Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
| Ref | Expression |
|---|---|
| rnco2 | ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnco 6241 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 2 | df-ima 5667 | . 2 ⊢ (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
| 3 | 1, 2 | eqtr4i 2761 | 1 ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ran crn 5655 ↾ cres 5656 “ cima 5657 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: dmco 6243 isf34lem7 10393 isf34lem6 10394 imasless 17554 gsumzf1o 19893 gsumzmhm 19918 gsumzinv 19926 dprdf1o 20015 pf1rcl 22287 ovolficcss 25422 volsup 25509 uniiccdif 25531 uniioombllem3 25538 dyadmbl 25553 itg1climres 25667 cvmlift3lem6 35346 mblfinlem2 37682 volsupnfl 37689 |
| Copyright terms: Public domain | W3C validator |