MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnco2 Structured version   Visualization version   GIF version

Theorem rnco2 6242
Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
rnco2 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)

Proof of Theorem rnco2
StepHypRef Expression
1 rnco 6241 . 2 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
2 df-ima 5679 . 2 (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵)
31, 2eqtr4i 2755 1 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  ran crn 5667  cres 5668  cima 5669  ccom 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679
This theorem is referenced by:  dmco  6243  isf34lem7  10369  isf34lem6  10370  imasless  17482  gsumzf1o  19817  gsumzmhm  19842  gsumzinv  19850  dprdf1o  19939  pf1rcl  22178  ovolficcss  25308  volsup  25395  uniiccdif  25417  uniioombllem3  25424  dyadmbl  25439  itg1climres  25554  cvmlift3lem6  34770  mblfinlem2  36982  volsupnfl  36989
  Copyright terms: Public domain W3C validator