Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnco2 | Structured version Visualization version GIF version |
Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.) |
Ref | Expression |
---|---|
rnco2 | ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnco 6085 | . 2 ⊢ ran (𝐴 ∘ 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
2 | df-ima 5538 | . 2 ⊢ (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵) | |
3 | 1, 2 | eqtr4i 2764 | 1 ⊢ ran (𝐴 ∘ 𝐵) = (𝐴 “ ran 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ran crn 5526 ↾ cres 5527 “ cima 5528 ∘ ccom 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-11 2162 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 |
This theorem is referenced by: dmco 6087 isf34lem7 9879 isf34lem6 9880 imasless 16916 gsumzf1o 19151 gsumzmhm 19176 gsumzinv 19184 dprdf1o 19273 pf1rcl 21119 ovolficcss 24221 volsup 24308 uniiccdif 24330 uniioombllem3 24337 dyadmbl 24352 itg1climres 24467 cvmlift3lem6 32857 mblfinlem2 35438 volsupnfl 35445 |
Copyright terms: Public domain | W3C validator |