MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnco2 Structured version   Visualization version   GIF version

Theorem rnco2 6146
Description: The range of the composition of two classes. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
rnco2 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)

Proof of Theorem rnco2
StepHypRef Expression
1 rnco 6145 . 2 ran (𝐴𝐵) = ran (𝐴 ↾ ran 𝐵)
2 df-ima 5593 . 2 (𝐴 “ ran 𝐵) = ran (𝐴 ↾ ran 𝐵)
31, 2eqtr4i 2769 1 ran (𝐴𝐵) = (𝐴 “ ran 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  ran crn 5581  cres 5582  cima 5583  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  dmco  6147  isf34lem7  10066  isf34lem6  10067  imasless  17168  gsumzf1o  19428  gsumzmhm  19453  gsumzinv  19461  dprdf1o  19550  pf1rcl  21425  ovolficcss  24538  volsup  24625  uniiccdif  24647  uniioombllem3  24654  dyadmbl  24669  itg1climres  24784  cvmlift3lem6  33186  mblfinlem2  35742  volsupnfl  35749
  Copyright terms: Public domain W3C validator