MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxfsupp Structured version   Visualization version   GIF version

Theorem rrxfsupp 25309
Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxf.1 (𝜑𝐹𝑋)
Assertion
Ref Expression
rrxfsupp (𝜑 → (𝐹 supp 0) ∈ Fin)
Distinct variable groups:   ,𝐹   ,𝐼
Allowed substitution hints:   𝜑()   𝑋()

Proof of Theorem rrxfsupp
StepHypRef Expression
1 rrxf.1 . . . . 5 (𝜑𝐹𝑋)
2 rrxmval.1 . . . . 5 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
31, 2eleqtrdi 2839 . . . 4 (𝜑𝐹 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
4 breq1 5113 . . . . 5 ( = 𝐹 → ( finSupp 0 ↔ 𝐹 finSupp 0))
54elrab 3662 . . . 4 (𝐹 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} ↔ (𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐹 finSupp 0))
63, 5sylib 218 . . 3 (𝜑 → (𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐹 finSupp 0))
76simprd 495 . 2 (𝜑𝐹 finSupp 0)
87fsuppimpd 9327 1 (𝜑 → (𝐹 supp 0) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408   class class class wbr 5110  (class class class)co 7390   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  cr 11074  0cc0 11075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-fsupp 9320
This theorem is referenced by:  rrxmval  25312  rrxmet  25315  rrxdstprj1  25316
  Copyright terms: Public domain W3C validator