| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxfsupp | Structured version Visualization version GIF version | ||
| Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
| Ref | Expression |
|---|---|
| rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
| rrxf.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| rrxfsupp | ⊢ (𝜑 → (𝐹 supp 0) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxf.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
| 2 | rrxmval.1 | . . . . 5 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
| 3 | 1, 2 | eleqtrdi 2838 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) |
| 4 | breq1 5105 | . . . . 5 ⊢ (ℎ = 𝐹 → (ℎ finSupp 0 ↔ 𝐹 finSupp 0)) | |
| 5 | 4 | elrab 3656 | . . . 4 ⊢ (𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} ↔ (𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐹 finSupp 0)) |
| 6 | 3, 5 | sylib 218 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐹 finSupp 0)) |
| 7 | 6 | simprd 495 | . 2 ⊢ (𝜑 → 𝐹 finSupp 0) |
| 8 | 7 | fsuppimpd 9296 | 1 ⊢ (𝜑 → (𝐹 supp 0) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 class class class wbr 5102 (class class class)co 7369 supp csupp 8116 ↑m cmap 8776 Fincfn 8895 finSupp cfsupp 9288 ℝcr 11043 0cc0 11044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-fsupp 9289 |
| This theorem is referenced by: rrxmval 25338 rrxmet 25341 rrxdstprj1 25342 |
| Copyright terms: Public domain | W3C validator |