MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxfsupp Structured version   Visualization version   GIF version

Theorem rrxfsupp 25354
Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxf.1 (𝜑𝐹𝑋)
Assertion
Ref Expression
rrxfsupp (𝜑 → (𝐹 supp 0) ∈ Fin)
Distinct variable groups:   ,𝐹   ,𝐼
Allowed substitution hints:   𝜑()   𝑋()

Proof of Theorem rrxfsupp
StepHypRef Expression
1 rrxf.1 . . . . 5 (𝜑𝐹𝑋)
2 rrxmval.1 . . . . 5 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
31, 2eleqtrdi 2844 . . . 4 (𝜑𝐹 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
4 breq1 5122 . . . . 5 ( = 𝐹 → ( finSupp 0 ↔ 𝐹 finSupp 0))
54elrab 3671 . . . 4 (𝐹 ∈ { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0} ↔ (𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐹 finSupp 0))
63, 5sylib 218 . . 3 (𝜑 → (𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐹 finSupp 0))
76simprd 495 . 2 (𝜑𝐹 finSupp 0)
87fsuppimpd 9381 1 (𝜑 → (𝐹 supp 0) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415   class class class wbr 5119  (class class class)co 7405   supp csupp 8159  m cmap 8840  Fincfn 8959   finSupp cfsupp 9373  cr 11128  0cc0 11129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-fsupp 9374
This theorem is referenced by:  rrxmval  25357  rrxmet  25360  rrxdstprj1  25361
  Copyright terms: Public domain W3C validator