![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxfsupp | Structured version Visualization version GIF version |
Description: Euclidean vectors are of finite support. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
rrxf.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
Ref | Expression |
---|---|
rrxfsupp | ⊢ (𝜑 → (𝐹 supp 0) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxf.1 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
2 | rrxmval.1 | . . . . 5 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
3 | 1, 2 | eleqtrdi 2836 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) |
4 | breq1 5147 | . . . . 5 ⊢ (ℎ = 𝐹 → (ℎ finSupp 0 ↔ 𝐹 finSupp 0)) | |
5 | 4 | elrab 3681 | . . . 4 ⊢ (𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} ↔ (𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐹 finSupp 0)) |
6 | 3, 5 | sylib 217 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (ℝ ↑m 𝐼) ∧ 𝐹 finSupp 0)) |
7 | 6 | simprd 494 | . 2 ⊢ (𝜑 → 𝐹 finSupp 0) |
8 | 7 | fsuppimpd 9404 | 1 ⊢ (𝜑 → (𝐹 supp 0) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3420 class class class wbr 5144 (class class class)co 7414 supp csupp 8164 ↑m cmap 8845 Fincfn 8964 finSupp cfsupp 9396 ℝcr 11146 0cc0 11147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3421 df-v 3465 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-br 5145 df-opab 5207 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7417 df-fsupp 9397 |
This theorem is referenced by: rrxmval 25419 rrxmet 25422 rrxdstprj1 25423 |
Copyright terms: Public domain | W3C validator |