Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxsuppss | Structured version Visualization version GIF version |
Description: Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
rrxf.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
Ref | Expression |
---|---|
rrxsuppss | ⊢ (𝜑 → (𝐹 supp 0) ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssdm 7919 | . 2 ⊢ (𝐹 supp 0) ⊆ dom 𝐹 | |
2 | rrxmval.1 | . . 3 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
3 | rrxf.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
4 | 2, 3 | rrxf 24298 | . 2 ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
5 | 1, 4 | fssdm 6565 | 1 ⊢ (𝜑 → (𝐹 supp 0) ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 {crab 3065 ⊆ wss 3866 class class class wbr 5053 (class class class)co 7213 supp csupp 7903 ↑m cmap 8508 finSupp cfsupp 8985 ℝcr 10728 0cc0 10729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-supp 7904 df-map 8510 |
This theorem is referenced by: rrxmval 24302 rrxmet 24305 rrxdstprj1 24306 |
Copyright terms: Public domain | W3C validator |