MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxsuppss Structured version   Visualization version   GIF version

Theorem rrxsuppss 24920
Description: Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = {β„Ž ∈ (ℝ ↑m 𝐼) ∣ β„Ž finSupp 0}
rrxf.1 (πœ‘ β†’ 𝐹 ∈ 𝑋)
Assertion
Ref Expression
rrxsuppss (πœ‘ β†’ (𝐹 supp 0) βŠ† 𝐼)
Distinct variable groups:   β„Ž,𝐹   β„Ž,𝐼
Allowed substitution hints:   πœ‘(β„Ž)   𝑋(β„Ž)

Proof of Theorem rrxsuppss
StepHypRef Expression
1 suppssdm 8162 . 2 (𝐹 supp 0) βŠ† dom 𝐹
2 rrxmval.1 . . 3 𝑋 = {β„Ž ∈ (ℝ ↑m 𝐼) ∣ β„Ž finSupp 0}
3 rrxf.1 . . 3 (πœ‘ β†’ 𝐹 ∈ 𝑋)
42, 3rrxf 24918 . 2 (πœ‘ β†’ 𝐹:πΌβŸΆβ„)
51, 4fssdm 6738 1 (πœ‘ β†’ (𝐹 supp 0) βŠ† 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  {crab 3433   βŠ† wss 3949   class class class wbr 5149  (class class class)co 7409   supp csupp 8146   ↑m cmap 8820   finSupp cfsupp 9361  β„cr 11109  0cc0 11110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-supp 8147  df-map 8822
This theorem is referenced by:  rrxmval  24922  rrxmet  24925  rrxdstprj1  24926
  Copyright terms: Public domain W3C validator