Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxsuppss | Structured version Visualization version GIF version |
Description: Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
rrxf.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
Ref | Expression |
---|---|
rrxsuppss | ⊢ (𝜑 → (𝐹 supp 0) ⊆ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssdm 7964 | . 2 ⊢ (𝐹 supp 0) ⊆ dom 𝐹 | |
2 | rrxmval.1 | . . 3 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
3 | rrxf.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
4 | 2, 3 | rrxf 24470 | . 2 ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
5 | 1, 4 | fssdm 6604 | 1 ⊢ (𝜑 → (𝐹 supp 0) ⊆ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 class class class wbr 5070 (class class class)co 7255 supp csupp 7948 ↑m cmap 8573 finSupp cfsupp 9058 ℝcr 10801 0cc0 10802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-supp 7949 df-map 8575 |
This theorem is referenced by: rrxmval 24474 rrxmet 24477 rrxdstprj1 24478 |
Copyright terms: Public domain | W3C validator |