MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxsuppss Structured version   Visualization version   GIF version

Theorem rrxsuppss 24472
Description: Support of Euclidean vectors. (Contributed by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxf.1 (𝜑𝐹𝑋)
Assertion
Ref Expression
rrxsuppss (𝜑 → (𝐹 supp 0) ⊆ 𝐼)
Distinct variable groups:   ,𝐹   ,𝐼
Allowed substitution hints:   𝜑()   𝑋()

Proof of Theorem rrxsuppss
StepHypRef Expression
1 suppssdm 7964 . 2 (𝐹 supp 0) ⊆ dom 𝐹
2 rrxmval.1 . . 3 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
3 rrxf.1 . . 3 (𝜑𝐹𝑋)
42, 3rrxf 24470 . 2 (𝜑𝐹:𝐼⟶ℝ)
51, 4fssdm 6604 1 (𝜑 → (𝐹 supp 0) ⊆ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  wss 3883   class class class wbr 5070  (class class class)co 7255   supp csupp 7948  m cmap 8573   finSupp cfsupp 9058  cr 10801  0cc0 10802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-supp 7949  df-map 8575
This theorem is referenced by:  rrxmval  24474  rrxmet  24477  rrxdstprj1  24478
  Copyright terms: Public domain W3C validator