Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxf | Structured version Visualization version GIF version |
Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
rrxf.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
Ref | Expression |
---|---|
rrxf | ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxmval.1 | . . . 4 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
2 | 1 | ssrab3 4020 | . . 3 ⊢ 𝑋 ⊆ (ℝ ↑m 𝐼) |
3 | rrxf.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
4 | 2, 3 | sselid 3924 | . 2 ⊢ (𝜑 → 𝐹 ∈ (ℝ ↑m 𝐼)) |
5 | elmapi 8620 | . 2 ⊢ (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {crab 3070 class class class wbr 5079 ⟶wf 6428 (class class class)co 7271 ↑m cmap 8598 finSupp cfsupp 9106 ℝcr 10871 0cc0 10872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-map 8600 |
This theorem is referenced by: rrxsuppss 24565 rrxmval 24567 rrxmetlem 24569 rrxmet 24570 rrxdstprj1 24571 |
Copyright terms: Public domain | W3C validator |