MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxf Structured version   Visualization version   GIF version

Theorem rrxf 24909
Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = {β„Ž ∈ (ℝ ↑m 𝐼) ∣ β„Ž finSupp 0}
rrxf.1 (πœ‘ β†’ 𝐹 ∈ 𝑋)
Assertion
Ref Expression
rrxf (πœ‘ β†’ 𝐹:πΌβŸΆβ„)
Distinct variable groups:   β„Ž,𝐹   β„Ž,𝐼
Allowed substitution hints:   πœ‘(β„Ž)   𝑋(β„Ž)

Proof of Theorem rrxf
StepHypRef Expression
1 rrxmval.1 . . . 4 𝑋 = {β„Ž ∈ (ℝ ↑m 𝐼) ∣ β„Ž finSupp 0}
21ssrab3 4079 . . 3 𝑋 βŠ† (ℝ ↑m 𝐼)
3 rrxf.1 . . 3 (πœ‘ β†’ 𝐹 ∈ 𝑋)
42, 3sselid 3979 . 2 (πœ‘ β†’ 𝐹 ∈ (ℝ ↑m 𝐼))
5 elmapi 8839 . 2 (𝐹 ∈ (ℝ ↑m 𝐼) β†’ 𝐹:πΌβŸΆβ„)
64, 5syl 17 1 (πœ‘ β†’ 𝐹:πΌβŸΆβ„)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  {crab 3432   class class class wbr 5147  βŸΆwf 6536  (class class class)co 7405   ↑m cmap 8816   finSupp cfsupp 9357  β„cr 11105  0cc0 11106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-map 8818
This theorem is referenced by:  rrxsuppss  24911  rrxmval  24913  rrxmetlem  24915  rrxmet  24916  rrxdstprj1  24917
  Copyright terms: Public domain W3C validator