MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxf Structured version   Visualization version   GIF version

Theorem rrxf 24563
Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxf.1 (𝜑𝐹𝑋)
Assertion
Ref Expression
rrxf (𝜑𝐹:𝐼⟶ℝ)
Distinct variable groups:   ,𝐹   ,𝐼
Allowed substitution hints:   𝜑()   𝑋()

Proof of Theorem rrxf
StepHypRef Expression
1 rrxmval.1 . . . 4 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
21ssrab3 4020 . . 3 𝑋 ⊆ (ℝ ↑m 𝐼)
3 rrxf.1 . . 3 (𝜑𝐹𝑋)
42, 3sselid 3924 . 2 (𝜑𝐹 ∈ (ℝ ↑m 𝐼))
5 elmapi 8620 . 2 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
64, 5syl 17 1 (𝜑𝐹:𝐼⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {crab 3070   class class class wbr 5079  wf 6428  (class class class)co 7271  m cmap 8598   finSupp cfsupp 9106  cr 10871  0cc0 10872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-map 8600
This theorem is referenced by:  rrxsuppss  24565  rrxmval  24567  rrxmetlem  24569  rrxmet  24570  rrxdstprj1  24571
  Copyright terms: Public domain W3C validator