![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxf | Structured version Visualization version GIF version |
Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | β’ π = {β β (β βm πΌ) β£ β finSupp 0} |
rrxf.1 | β’ (π β πΉ β π) |
Ref | Expression |
---|---|
rrxf | β’ (π β πΉ:πΌβΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxmval.1 | . . . 4 β’ π = {β β (β βm πΌ) β£ β finSupp 0} | |
2 | 1 | ssrab3 4079 | . . 3 β’ π β (β βm πΌ) |
3 | rrxf.1 | . . 3 β’ (π β πΉ β π) | |
4 | 2, 3 | sselid 3979 | . 2 β’ (π β πΉ β (β βm πΌ)) |
5 | elmapi 8839 | . 2 β’ (πΉ β (β βm πΌ) β πΉ:πΌβΆβ) | |
6 | 4, 5 | syl 17 | 1 β’ (π β πΉ:πΌβΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {crab 3432 class class class wbr 5147 βΆwf 6536 (class class class)co 7405 βm cmap 8816 finSupp cfsupp 9357 βcr 11105 0cc0 11106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 |
This theorem is referenced by: rrxsuppss 24911 rrxmval 24913 rrxmetlem 24915 rrxmet 24916 rrxdstprj1 24917 |
Copyright terms: Public domain | W3C validator |