Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxf | Structured version Visualization version GIF version |
Description: Euclidean vectors as functions. (Contributed by Thierry Arnoux, 7-Jul-2019.) |
Ref | Expression |
---|---|
rrxmval.1 | ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
rrxf.1 | ⊢ (𝜑 → 𝐹 ∈ 𝑋) |
Ref | Expression |
---|---|
rrxf | ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxmval.1 | . . . 4 ⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} | |
2 | 1 | ssrab3 4015 | . . 3 ⊢ 𝑋 ⊆ (ℝ ↑m 𝐼) |
3 | rrxf.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑋) | |
4 | 2, 3 | sselid 3919 | . 2 ⊢ (𝜑 → 𝐹 ∈ (ℝ ↑m 𝐼)) |
5 | elmapi 8637 | . 2 ⊢ (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → 𝐹:𝐼⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 class class class wbr 5074 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 finSupp cfsupp 9128 ℝcr 10870 0cc0 10871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: rrxsuppss 24567 rrxmval 24569 rrxmetlem 24571 rrxmet 24572 rrxdstprj1 24573 |
Copyright terms: Public domain | W3C validator |