Step | Hyp | Ref
| Expression |
1 | | rrxmval.d |
. . . . 5
⊢ 𝐷 =
(dist‘(ℝ^‘𝐼)) |
2 | | eqid 2759 |
. . . . . 6
⊢
(ℝ^‘𝐼) =
(ℝ^‘𝐼) |
3 | | eqid 2759 |
. . . . . 6
⊢
(Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) |
4 | 2, 3 | rrxds 24086 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) =
(dist‘(ℝ^‘𝐼))) |
5 | 1, 4 | eqtr4id 2813 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
6 | | rrxmval.1 |
. . . . . 6
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
7 | 2, 3 | rrxbase 24081 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → (Base‘(ℝ^‘𝐼)) = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) |
8 | 6, 7 | eqtr4id 2813 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → 𝑋 = (Base‘(ℝ^‘𝐼))) |
9 | | mpoeq12 7222 |
. . . . 5
⊢ ((𝑋 =
(Base‘(ℝ^‘𝐼)) ∧ 𝑋 = (Base‘(ℝ^‘𝐼))) → (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
10 | 8, 8, 9 | syl2anc 588 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
11 | 5, 10 | eqtr4d 2797 |
. . 3
⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
12 | 11 | 3ad2ant1 1131 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
13 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑓 = 𝐹) |
14 | 13 | fveq1d 6661 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
15 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑔 = 𝐺) |
16 | 15 | fveq1d 6661 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑔‘𝑥) = (𝐺‘𝑥)) |
17 | 14, 16 | oveq12d 7169 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → ((𝑓‘𝑥) − (𝑔‘𝑥)) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
18 | 17 | oveq1d 7166 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (((𝑓‘𝑥) − (𝑔‘𝑥))↑2) = (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
19 | 18 | mpteq2dv 5129 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) |
20 | 19 | oveq2d 7167 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))) = (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)))) |
21 | | simp2 1135 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹 ∈ 𝑋) |
22 | 6, 21 | rrxf 24094 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹:𝐼⟶ℝ) |
23 | 22 | ffvelrnda 6843 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ℝ) |
24 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ 𝑋) |
25 | 6, 24 | rrxf 24094 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺:𝐼⟶ℝ) |
26 | 25 | ffvelrnda 6843 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ ℝ) |
27 | 23, 26 | resubcld 11099 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈ ℝ) |
28 | 27 | resqcld 13654 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) ∈ ℝ) |
29 | 28 | fmpttd 6871 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)):𝐼⟶ℝ) |
30 | 6, 21 | rrxfsupp 24095 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹 supp 0) ∈ Fin) |
31 | 6, 24 | rrxfsupp 24095 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐺 supp 0) ∈ Fin) |
32 | | unfi 8811 |
. . . . . . . . . 10
⊢ (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) →
((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈
Fin) |
33 | 30, 31, 32 | syl2anc 588 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin) |
34 | 6 | rrxmvallem 24097 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
35 | 33, 34 | ssfid 8763 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin) |
36 | | mptexg 6976 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ∈ V) |
37 | | funmpt 6374 |
. . . . . . . . . . 11
⊢ Fun
(𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
38 | | 0cn 10664 |
. . . . . . . . . . 11
⊢ 0 ∈
ℂ |
39 | | funisfsupp 8864 |
. . . . . . . . . . 11
⊢ ((Fun
(𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ∧ (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ∈ V ∧ 0 ∈ ℂ)
→ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin)) |
40 | 37, 38, 39 | mp3an13 1450 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ∈ V → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin)) |
41 | 36, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin)) |
42 | 41 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin)) |
43 | 35, 42 | mpbird 260 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0) |
44 | | simp1 1134 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
45 | | regsumsupp 20380 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
46 | 29, 43, 44, 45 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
47 | | suppssdm 7852 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ dom (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
48 | | eqid 2759 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
49 | 48 | dmmptss 6071 |
. . . . . . . . . . 11
⊢ dom
(𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ⊆ 𝐼 |
50 | 47, 49 | sstri 3902 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ 𝐼 |
51 | 50 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ 𝐼) |
52 | 51 | sselda 3893 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) → 𝑘 ∈ 𝐼) |
53 | | eqidd 2760 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) |
54 | | simpr 489 |
. . . . . . . . . . . . 13
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘) |
55 | 54 | fveq2d 6663 |
. . . . . . . . . . . 12
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → (𝐹‘𝑥) = (𝐹‘𝑘)) |
56 | 54 | fveq2d 6663 |
. . . . . . . . . . . 12
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → (𝐺‘𝑥) = (𝐺‘𝑘)) |
57 | 55, 56 | oveq12d 7169 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → ((𝐹‘𝑥) − (𝐺‘𝑥)) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
58 | 57 | oveq1d 7166 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) = (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
59 | | simpr 489 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ 𝐼) |
60 | | ovexd 7186 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ V) |
61 | 53, 58, 59, 60 | fvmptd 6767 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘) = (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
62 | 61 | eqcomd 2765 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
63 | 52, 62 | syldan 595 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
64 | 63 | sumeq2dv 15101 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
65 | 46, 64 | eqtr4d 2797 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
66 | 65 | adantr 485 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
67 | 22 | ffvelrnda 6843 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
68 | 67 | recnd 10700 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℂ) |
69 | 25 | ffvelrnda 6843 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
70 | 69 | recnd 10700 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℂ) |
71 | 68, 70 | subcld 11028 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℂ) |
72 | 71 | sqcld 13551 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℂ) |
73 | 52, 72 | syldan 595 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℂ) |
74 | 6, 21 | rrxsuppss 24096 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹 supp 0) ⊆ 𝐼) |
75 | 6, 24 | rrxsuppss 24096 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐺 supp 0) ⊆ 𝐼) |
76 | 74, 75 | unssd 4092 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
77 | 76 | ssdifssd 4049 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) ⊆ 𝐼) |
78 | 77 | sselda 3893 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → 𝑘 ∈ 𝐼) |
79 | 78, 62 | syldan 595 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
80 | 76 | ssdifd 4047 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) ⊆ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) |
81 | 80 | sselda 3893 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → 𝑘 ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) |
82 | | ssidd 3916 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) |
83 | | 0cnd 10665 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 0 ∈ ℂ) |
84 | 29, 82, 44, 83 | suppssr 7871 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘) = 0) |
85 | 81, 84 | syldan 595 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘) = 0) |
86 | 79, 85 | eqtrd 2794 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
87 | 34, 73, 86, 33 | fsumss 15123 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
88 | 87 | adantr 485 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
89 | 20, 66, 88 | 3eqtrd 2798 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
90 | 89 | fveq2d 6663 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) →
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
91 | | fvexd 6674 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ∈ V) |
92 | 12, 90, 21, 24, 91 | ovmpod 7298 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |