Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmval Structured version   Visualization version   GIF version

Theorem rrxmval 24098
 Description: The value of the Euclidean metric. Compare with rrnmval 35539. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmval ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
2 eqid 2759 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
3 eqid 2759 . . . . . 6 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
42, 3rrxds 24086 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
51, 4eqtr4id 2813 . . . 4 (𝐼𝑉𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
6 rrxmval.1 . . . . . 6 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
72, 3rrxbase 24081 . . . . . 6 (𝐼𝑉 → (Base‘(ℝ^‘𝐼)) = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
86, 7eqtr4id 2813 . . . . 5 (𝐼𝑉𝑋 = (Base‘(ℝ^‘𝐼)))
9 mpoeq12 7222 . . . . 5 ((𝑋 = (Base‘(ℝ^‘𝐼)) ∧ 𝑋 = (Base‘(ℝ^‘𝐼))) → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
108, 8, 9syl2anc 588 . . . 4 (𝐼𝑉 → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
115, 10eqtr4d 2797 . . 3 (𝐼𝑉𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
12113ad2ant1 1131 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
13 simprl 771 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
1413fveq1d 6661 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓𝑥) = (𝐹𝑥))
15 simprr 773 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑔 = 𝐺)
1615fveq1d 6661 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑔𝑥) = (𝐺𝑥))
1714, 16oveq12d 7169 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
1817oveq1d 7166 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
1918mpteq2dv 5129 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
2019oveq2d 7167 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))))
21 simp2 1135 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹𝑋)
226, 21rrxf 24094 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹:𝐼⟶ℝ)
2322ffvelrnda 6843 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
24 simp3 1136 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺𝑋)
256, 24rrxf 24094 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺:𝐼⟶ℝ)
2625ffvelrnda 6843 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
2723, 26resubcld 11099 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℝ)
2827resqcld 13654 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ ℝ)
2928fmpttd 6871 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ)
306, 21rrxfsupp 24095 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ∈ Fin)
316, 24rrxfsupp 24095 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ∈ Fin)
32 unfi 8811 . . . . . . . . . 10 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
3330, 31, 32syl2anc 588 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
346rrxmvallem 24097 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3533, 34ssfid 8763 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin)
36 mptexg 6976 . . . . . . . . . 10 (𝐼𝑉 → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V)
37 funmpt 6374 . . . . . . . . . . 11 Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
38 0cn 10664 . . . . . . . . . . 11 0 ∈ ℂ
39 funisfsupp 8864 . . . . . . . . . . 11 ((Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V ∧ 0 ∈ ℂ) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4037, 38, 39mp3an13 1450 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4136, 40syl 17 . . . . . . . . 9 (𝐼𝑉 → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
42413ad2ant1 1131 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4335, 42mpbird 260 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0)
44 simp1 1134 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
45 regsumsupp 20380 . . . . . . 7 (((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
4629, 43, 44, 45syl3anc 1369 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
47 suppssdm 7852 . . . . . . . . . . 11 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
48 eqid 2759 . . . . . . . . . . . 12 (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
4948dmmptss 6071 . . . . . . . . . . 11 dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ⊆ 𝐼
5047, 49sstri 3902 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼
5150a1i 11 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼)
5251sselda 3893 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → 𝑘𝐼)
53 eqidd 2760 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
54 simpr 489 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘)
5554fveq2d 6663 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐹𝑥) = (𝐹𝑘))
5654fveq2d 6663 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐺𝑥) = (𝐺𝑘))
5755, 56oveq12d 7169 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝑘) − (𝐺𝑘)))
5857oveq1d 7166 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝐹𝑥) − (𝐺𝑥))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
59 simpr 489 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → 𝑘𝐼)
60 ovexd 7186 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V)
6153, 58, 59, 60fvmptd 6767 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = (((𝐹𝑘) − (𝐺𝑘))↑2))
6261eqcomd 2765 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6352, 62syldan 595 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6463sumeq2dv 15101 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6546, 64eqtr4d 2797 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6665adantr 485 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6722ffvelrnda 6843 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
6867recnd 10700 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
6925ffvelrnda 6843 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
7069recnd 10700 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
7168, 70subcld 11028 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
7271sqcld 13551 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
7352, 72syldan 595 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
746, 21rrxsuppss 24096 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ⊆ 𝐼)
756, 24rrxsuppss 24096 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ⊆ 𝐼)
7674, 75unssd 4092 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
7776ssdifssd 4049 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ 𝐼)
7877sselda 3893 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘𝐼)
7978, 62syldan 595 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
8076ssdifd 4047 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
8180sselda 3893 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
82 ssidd 3916 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))
83 0cnd 10665 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
8429, 82, 44, 83suppssr 7871 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8581, 84syldan 595 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8679, 85eqtrd 2794 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
8734, 73, 86, 33fsumss 15123 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
8887adantr 485 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
8920, 66, 883eqtrd 2798 . . 3 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
9089fveq2d 6663 . 2 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
91 fvexd 6674 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ V)
9212, 90, 21, 24, 91ovmpod 7298 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  {crab 3075  Vcvv 3410   ∖ cdif 3856   ∪ cun 3857   ⊆ wss 3859   class class class wbr 5033   ↦ cmpt 5113  dom cdm 5525  Fun wfun 6330  ⟶wf 6332  ‘cfv 6336  (class class class)co 7151   ∈ cmpo 7153   supp csupp 7836   ↑m cmap 8417  Fincfn 8528   finSupp cfsupp 8859  ℂcc 10566  ℝcr 10567  0cc0 10568   − cmin 10901  2c2 11722  ↑cexp 13472  √csqrt 14633  Σcsu 15083  Basecbs 16534  distcds 16625   Σg cgsu 16765  ℝfldcrefld 20362  ℝ^crrx 24076 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646  ax-addf 10647  ax-mulf 10648 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-tpos 7903  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8860  df-sup 8932  df-oi 9000  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-rp 12424  df-fz 12933  df-fzo 13076  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-clim 14886  df-sum 15084  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-starv 16631  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-hom 16640  df-cco 16641  df-0g 16766  df-gsum 16767  df-prds 16772  df-pws 16774  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-mhm 18015  df-grp 18165  df-minusg 18166  df-sbg 18167  df-subg 18336  df-ghm 18416  df-cntz 18507  df-cmn 18968  df-abl 18969  df-mgp 19301  df-ur 19313  df-ring 19360  df-cring 19361  df-oppr 19437  df-dvdsr 19455  df-unit 19456  df-invr 19486  df-dvr 19497  df-rnghom 19531  df-drng 19565  df-field 19566  df-subrg 19594  df-staf 19677  df-srng 19678  df-lmod 19697  df-lss 19765  df-sra 20005  df-rgmod 20006  df-cnfld 20160  df-refld 20363  df-dsmm 20490  df-frlm 20505  df-nm 23277  df-tng 23279  df-tcph 23863  df-rrx 24078 This theorem is referenced by:  rrxmfval  24099  rrxmet  24101  rrxdstprj1  24102
 Copyright terms: Public domain W3C validator