MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmval Structured version   Visualization version   GIF version

Theorem rrxmval 24769
Description: The value of the Euclidean metric. Compare with rrnmval 36287. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmval ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
2 eqid 2736 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
3 eqid 2736 . . . . . 6 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
42, 3rrxds 24757 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
51, 4eqtr4id 2795 . . . 4 (𝐼𝑉𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
6 rrxmval.1 . . . . . 6 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
72, 3rrxbase 24752 . . . . . 6 (𝐼𝑉 → (Base‘(ℝ^‘𝐼)) = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
86, 7eqtr4id 2795 . . . . 5 (𝐼𝑉𝑋 = (Base‘(ℝ^‘𝐼)))
9 mpoeq12 7430 . . . . 5 ((𝑋 = (Base‘(ℝ^‘𝐼)) ∧ 𝑋 = (Base‘(ℝ^‘𝐼))) → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
108, 8, 9syl2anc 584 . . . 4 (𝐼𝑉 → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
115, 10eqtr4d 2779 . . 3 (𝐼𝑉𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
12113ad2ant1 1133 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
13 simprl 769 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
1413fveq1d 6844 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓𝑥) = (𝐹𝑥))
15 simprr 771 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑔 = 𝐺)
1615fveq1d 6844 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑔𝑥) = (𝐺𝑥))
1714, 16oveq12d 7375 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
1817oveq1d 7372 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
1918mpteq2dv 5207 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
2019oveq2d 7373 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))))
21 simp2 1137 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹𝑋)
226, 21rrxf 24765 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹:𝐼⟶ℝ)
2322ffvelcdmda 7035 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
24 simp3 1138 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺𝑋)
256, 24rrxf 24765 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺:𝐼⟶ℝ)
2625ffvelcdmda 7035 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
2723, 26resubcld 11583 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℝ)
2827resqcld 14030 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ ℝ)
2928fmpttd 7063 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ)
306, 21rrxfsupp 24766 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ∈ Fin)
316, 24rrxfsupp 24766 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ∈ Fin)
32 unfi 9116 . . . . . . . . . 10 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
3330, 31, 32syl2anc 584 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
346rrxmvallem 24768 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3533, 34ssfid 9211 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin)
36 mptexg 7171 . . . . . . . . . 10 (𝐼𝑉 → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V)
37 funmpt 6539 . . . . . . . . . . 11 Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
38 0cn 11147 . . . . . . . . . . 11 0 ∈ ℂ
39 funisfsupp 9310 . . . . . . . . . . 11 ((Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V ∧ 0 ∈ ℂ) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4037, 38, 39mp3an13 1452 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4136, 40syl 17 . . . . . . . . 9 (𝐼𝑉 → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
42413ad2ant1 1133 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4335, 42mpbird 256 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0)
44 simp1 1136 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
45 regsumsupp 21026 . . . . . . 7 (((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
4629, 43, 44, 45syl3anc 1371 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
47 suppssdm 8108 . . . . . . . . . . 11 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
48 eqid 2736 . . . . . . . . . . . 12 (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
4948dmmptss 6193 . . . . . . . . . . 11 dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ⊆ 𝐼
5047, 49sstri 3953 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼
5150a1i 11 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼)
5251sselda 3944 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → 𝑘𝐼)
53 eqidd 2737 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
54 simpr 485 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘)
5554fveq2d 6846 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐹𝑥) = (𝐹𝑘))
5654fveq2d 6846 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐺𝑥) = (𝐺𝑘))
5755, 56oveq12d 7375 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝑘) − (𝐺𝑘)))
5857oveq1d 7372 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝐹𝑥) − (𝐺𝑥))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
59 simpr 485 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → 𝑘𝐼)
60 ovexd 7392 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V)
6153, 58, 59, 60fvmptd 6955 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = (((𝐹𝑘) − (𝐺𝑘))↑2))
6261eqcomd 2742 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6352, 62syldan 591 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6463sumeq2dv 15588 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6546, 64eqtr4d 2779 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6665adantr 481 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6722ffvelcdmda 7035 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
6867recnd 11183 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
6925ffvelcdmda 7035 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
7069recnd 11183 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
7168, 70subcld 11512 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
7271sqcld 14049 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
7352, 72syldan 591 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
746, 21rrxsuppss 24767 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ⊆ 𝐼)
756, 24rrxsuppss 24767 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ⊆ 𝐼)
7674, 75unssd 4146 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
7776ssdifssd 4102 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ 𝐼)
7877sselda 3944 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘𝐼)
7978, 62syldan 591 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
8076ssdifd 4100 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
8180sselda 3944 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
82 ssidd 3967 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))
83 0cnd 11148 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
8429, 82, 44, 83suppssr 8127 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8581, 84syldan 591 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8679, 85eqtrd 2776 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
8734, 73, 86, 33fsumss 15610 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
8887adantr 481 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
8920, 66, 883eqtrd 2780 . . 3 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
9089fveq2d 6846 . 2 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
91 fvexd 6857 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ V)
9212, 90, 21, 24, 91ovmpod 7507 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  wss 3910   class class class wbr 5105  cmpt 5188  dom cdm 5633  Fun wfun 6490  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359   supp csupp 8092  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  cc 11049  cr 11050  0cc0 11051  cmin 11385  2c2 12208  cexp 13967  csqrt 15118  Σcsu 15570  Basecbs 17083  distcds 17142   Σg cgsu 17322  fldcrefld 21008  ℝ^crrx 24747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-staf 20304  df-srng 20305  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-refld 21009  df-dsmm 21138  df-frlm 21153  df-nm 23938  df-tng 23940  df-tcph 24533  df-rrx 24749
This theorem is referenced by:  rrxmfval  24770  rrxmet  24772  rrxdstprj1  24773
  Copyright terms: Public domain W3C validator