| Step | Hyp | Ref
| Expression |
| 1 | | rrxmval.d |
. . . . 5
⊢ 𝐷 =
(dist‘(ℝ^‘𝐼)) |
| 2 | | eqid 2737 |
. . . . . 6
⊢
(ℝ^‘𝐼) =
(ℝ^‘𝐼) |
| 3 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) |
| 4 | 2, 3 | rrxds 25427 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) =
(dist‘(ℝ^‘𝐼))) |
| 5 | 1, 4 | eqtr4id 2796 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
| 6 | | rrxmval.1 |
. . . . . 6
⊢ 𝑋 = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0} |
| 7 | 2, 3 | rrxbase 25422 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → (Base‘(ℝ^‘𝐼)) = {ℎ ∈ (ℝ ↑m 𝐼) ∣ ℎ finSupp 0}) |
| 8 | 6, 7 | eqtr4id 2796 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → 𝑋 = (Base‘(ℝ^‘𝐼))) |
| 9 | | mpoeq12 7506 |
. . . . 5
⊢ ((𝑋 =
(Base‘(ℝ^‘𝐼)) ∧ 𝑋 = (Base‘(ℝ^‘𝐼))) → (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
| 10 | 8, 8, 9 | syl2anc 584 |
. . . 4
⊢ (𝐼 ∈ 𝑉 → (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
| 11 | 5, 10 | eqtr4d 2780 |
. . 3
⊢ (𝐼 ∈ 𝑉 → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
| 12 | 11 | 3ad2ant1 1134 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))))) |
| 13 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑓 = 𝐹) |
| 14 | 13 | fveq1d 6908 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 15 | | simprr 773 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → 𝑔 = 𝐺) |
| 16 | 15 | fveq1d 6908 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑔‘𝑥) = (𝐺‘𝑥)) |
| 17 | 14, 16 | oveq12d 7449 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → ((𝑓‘𝑥) − (𝑔‘𝑥)) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
| 18 | 17 | oveq1d 7446 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (((𝑓‘𝑥) − (𝑔‘𝑥))↑2) = (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
| 19 | 18 | mpteq2dv 5244 |
. . . . 5
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) |
| 20 | 19 | oveq2d 7447 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))) = (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)))) |
| 21 | | simp2 1138 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹 ∈ 𝑋) |
| 22 | 6, 21 | rrxf 25435 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹:𝐼⟶ℝ) |
| 23 | 22 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ℝ) |
| 24 | | simp3 1139 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ 𝑋) |
| 25 | 6, 24 | rrxf 25435 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺:𝐼⟶ℝ) |
| 26 | 25 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ ℝ) |
| 27 | 23, 26 | resubcld 11691 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈ ℝ) |
| 28 | 27 | resqcld 14165 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑥 ∈ 𝐼) → (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) ∈ ℝ) |
| 29 | 28 | fmpttd 7135 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)):𝐼⟶ℝ) |
| 30 | 6, 21 | rrxfsupp 25436 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹 supp 0) ∈ Fin) |
| 31 | 6, 24 | rrxfsupp 25436 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐺 supp 0) ∈ Fin) |
| 32 | | unfi 9211 |
. . . . . . . . . 10
⊢ (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) →
((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈
Fin) |
| 33 | 30, 31, 32 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin) |
| 34 | 6 | rrxmvallem 25438 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 35 | 33, 34 | ssfid 9301 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin) |
| 36 | | mptexg 7241 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ∈ V) |
| 37 | | funmpt 6604 |
. . . . . . . . . . 11
⊢ Fun
(𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
| 38 | | 0cn 11253 |
. . . . . . . . . . 11
⊢ 0 ∈
ℂ |
| 39 | | funisfsupp 9407 |
. . . . . . . . . . 11
⊢ ((Fun
(𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ∧ (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ∈ V ∧ 0 ∈ ℂ)
→ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin)) |
| 40 | 37, 38, 39 | mp3an13 1454 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ∈ V → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin)) |
| 41 | 36, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝐼 ∈ 𝑉 → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin)) |
| 42 | 41 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ∈
Fin)) |
| 43 | 35, 42 | mpbird 257 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0) |
| 44 | | simp1 1137 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
| 45 | | regsumsupp 21640 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) finSupp 0 ∧ 𝐼 ∈ 𝑉) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
| 46 | 29, 43, 44, 45 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
| 47 | | suppssdm 8202 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ dom (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
| 48 | | eqid 2737 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) |
| 49 | 48 | dmmptss 6261 |
. . . . . . . . . . 11
⊢ dom
(𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) ⊆ 𝐼 |
| 50 | 47, 49 | sstri 3993 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ 𝐼 |
| 51 | 50 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ 𝐼) |
| 52 | 51 | sselda 3983 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) → 𝑘 ∈ 𝐼) |
| 53 | | eqidd 2738 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) = (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) |
| 54 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘) |
| 55 | 54 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → (𝐹‘𝑥) = (𝐹‘𝑘)) |
| 56 | 54 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → (𝐺‘𝑥) = (𝐺‘𝑘)) |
| 57 | 55, 56 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → ((𝐹‘𝑥) − (𝐺‘𝑥)) = ((𝐹‘𝑘) − (𝐺‘𝑘))) |
| 58 | 57 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 = 𝑘) → (((𝐹‘𝑥) − (𝐺‘𝑥))↑2) = (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 59 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → 𝑘 ∈ 𝐼) |
| 60 | | ovexd 7466 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ V) |
| 61 | 53, 58, 59, 60 | fvmptd 7023 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘) = (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 62 | 61 | eqcomd 2743 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
| 63 | 52, 62 | syldan 591 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
| 64 | 63 | sumeq2dv 15738 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
| 65 | 46, 64 | eqtr4d 2780 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 66 | 65 | adantr 480 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))) = Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 67 | 22 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
| 68 | 67 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℂ) |
| 69 | 25 | ffvelcdmda 7104 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
| 70 | 69 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℂ) |
| 71 | 68, 70 | subcld 11620 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℂ) |
| 72 | 71 | sqcld 14184 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℂ) |
| 73 | 52, 72 | syldan 591 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℂ) |
| 74 | 6, 21 | rrxsuppss 25437 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹 supp 0) ⊆ 𝐼) |
| 75 | 6, 24 | rrxsuppss 25437 |
. . . . . . . . . . 11
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐺 supp 0) ⊆ 𝐼) |
| 76 | 74, 75 | unssd 4192 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼) |
| 77 | 76 | ssdifssd 4147 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) ⊆ 𝐼) |
| 78 | 77 | sselda 3983 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → 𝑘 ∈ 𝐼) |
| 79 | 78, 62 | syldan 591 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘)) |
| 80 | 76 | ssdifd 4145 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) ⊆ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) |
| 81 | 80 | sselda 3983 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → 𝑘 ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) |
| 82 | | ssidd 4007 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0) ⊆ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)) |
| 83 | | 0cnd 11254 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 0 ∈ ℂ) |
| 84 | 29, 82, 44, 83 | suppssr 8220 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘) = 0) |
| 85 | 81, 84 | syldan 591 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2))‘𝑘) = 0) |
| 86 | 79, 85 | eqtrd 2777 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0))) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = 0) |
| 87 | 34, 73, 86, 33 | fsumss 15761 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 88 | 87 | adantr 480 |
. . . 4
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → Σ𝑘 ∈ ((𝑥 ∈ 𝐼 ↦ (((𝐹‘𝑥) − (𝐺‘𝑥))↑2)) supp 0)(((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 89 | 20, 66, 88 | 3eqtrd 2781 |
. . 3
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (ℝfld
Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2))) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 90 | 89 | fveq2d 6910 |
. 2
⊢ (((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) →
(√‘(ℝfld Σg (𝑥 ∈ 𝐼 ↦ (((𝑓‘𝑥) − (𝑔‘𝑥))↑2)))) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
| 91 | | fvexd 6921 |
. 2
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ∈ V) |
| 92 | 12, 90, 21, 24, 91 | ovmpod 7585 |
1
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |