MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmval Structured version   Visualization version   GIF version

Theorem rrxmval 25439
Description: The value of the Euclidean metric. Compare with rrnmval 37835. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmval ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
2 eqid 2737 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
3 eqid 2737 . . . . . 6 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
42, 3rrxds 25427 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
51, 4eqtr4id 2796 . . . 4 (𝐼𝑉𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
6 rrxmval.1 . . . . . 6 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
72, 3rrxbase 25422 . . . . . 6 (𝐼𝑉 → (Base‘(ℝ^‘𝐼)) = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
86, 7eqtr4id 2796 . . . . 5 (𝐼𝑉𝑋 = (Base‘(ℝ^‘𝐼)))
9 mpoeq12 7506 . . . . 5 ((𝑋 = (Base‘(ℝ^‘𝐼)) ∧ 𝑋 = (Base‘(ℝ^‘𝐼))) → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
108, 8, 9syl2anc 584 . . . 4 (𝐼𝑉 → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
115, 10eqtr4d 2780 . . 3 (𝐼𝑉𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
12113ad2ant1 1134 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
13 simprl 771 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
1413fveq1d 6908 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓𝑥) = (𝐹𝑥))
15 simprr 773 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑔 = 𝐺)
1615fveq1d 6908 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑔𝑥) = (𝐺𝑥))
1714, 16oveq12d 7449 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
1817oveq1d 7446 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
1918mpteq2dv 5244 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
2019oveq2d 7447 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))))
21 simp2 1138 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹𝑋)
226, 21rrxf 25435 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹:𝐼⟶ℝ)
2322ffvelcdmda 7104 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
24 simp3 1139 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺𝑋)
256, 24rrxf 25435 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺:𝐼⟶ℝ)
2625ffvelcdmda 7104 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
2723, 26resubcld 11691 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℝ)
2827resqcld 14165 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ ℝ)
2928fmpttd 7135 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ)
306, 21rrxfsupp 25436 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ∈ Fin)
316, 24rrxfsupp 25436 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ∈ Fin)
32 unfi 9211 . . . . . . . . . 10 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
3330, 31, 32syl2anc 584 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
346rrxmvallem 25438 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3533, 34ssfid 9301 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin)
36 mptexg 7241 . . . . . . . . . 10 (𝐼𝑉 → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V)
37 funmpt 6604 . . . . . . . . . . 11 Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
38 0cn 11253 . . . . . . . . . . 11 0 ∈ ℂ
39 funisfsupp 9407 . . . . . . . . . . 11 ((Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V ∧ 0 ∈ ℂ) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4037, 38, 39mp3an13 1454 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4136, 40syl 17 . . . . . . . . 9 (𝐼𝑉 → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
42413ad2ant1 1134 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4335, 42mpbird 257 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0)
44 simp1 1137 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
45 regsumsupp 21640 . . . . . . 7 (((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
4629, 43, 44, 45syl3anc 1373 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
47 suppssdm 8202 . . . . . . . . . . 11 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
48 eqid 2737 . . . . . . . . . . . 12 (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
4948dmmptss 6261 . . . . . . . . . . 11 dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ⊆ 𝐼
5047, 49sstri 3993 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼
5150a1i 11 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼)
5251sselda 3983 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → 𝑘𝐼)
53 eqidd 2738 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
54 simpr 484 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘)
5554fveq2d 6910 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐹𝑥) = (𝐹𝑘))
5654fveq2d 6910 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐺𝑥) = (𝐺𝑘))
5755, 56oveq12d 7449 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝑘) − (𝐺𝑘)))
5857oveq1d 7446 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝐹𝑥) − (𝐺𝑥))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
59 simpr 484 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → 𝑘𝐼)
60 ovexd 7466 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V)
6153, 58, 59, 60fvmptd 7023 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = (((𝐹𝑘) − (𝐺𝑘))↑2))
6261eqcomd 2743 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6352, 62syldan 591 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6463sumeq2dv 15738 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6546, 64eqtr4d 2780 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6665adantr 480 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6722ffvelcdmda 7104 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
6867recnd 11289 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
6925ffvelcdmda 7104 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
7069recnd 11289 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
7168, 70subcld 11620 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
7271sqcld 14184 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
7352, 72syldan 591 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
746, 21rrxsuppss 25437 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ⊆ 𝐼)
756, 24rrxsuppss 25437 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ⊆ 𝐼)
7674, 75unssd 4192 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
7776ssdifssd 4147 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ 𝐼)
7877sselda 3983 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘𝐼)
7978, 62syldan 591 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
8076ssdifd 4145 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
8180sselda 3983 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
82 ssidd 4007 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))
83 0cnd 11254 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
8429, 82, 44, 83suppssr 8220 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8581, 84syldan 591 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8679, 85eqtrd 2777 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
8734, 73, 86, 33fsumss 15761 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
8887adantr 480 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
8920, 66, 883eqtrd 2781 . . 3 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
9089fveq2d 6910 . 2 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
91 fvexd 6921 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ V)
9212, 90, 21, 24, 91ovmpod 7585 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  wss 3951   class class class wbr 5143  cmpt 5225  dom cdm 5685  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433   supp csupp 8185  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  cc 11153  cr 11154  0cc0 11155  cmin 11492  2c2 12321  cexp 14102  csqrt 15272  Σcsu 15722  Basecbs 17247  distcds 17306   Σg cgsu 17485  fldcrefld 21622  ℝ^crrx 25417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-field 20732  df-staf 20840  df-srng 20841  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-refld 21623  df-dsmm 21752  df-frlm 21767  df-nm 24595  df-tng 24597  df-tcph 25203  df-rrx 25419
This theorem is referenced by:  rrxmfval  25440  rrxmet  25442  rrxdstprj1  25443
  Copyright terms: Public domain W3C validator