MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmval Structured version   Visualization version   GIF version

Theorem rrxmval 23406
Description: The value of the Euclidean metric. Compare with rrnmval 33952. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmval ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2770 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
2 eqid 2770 . . . . . 6 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
31, 2rrxds 23399 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
4 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
53, 4syl6reqr 2823 . . . 4 (𝐼𝑉𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
61, 2rrxbase 23394 . . . . . 6 (𝐼𝑉 → (Base‘(ℝ^‘𝐼)) = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0})
7 rrxmval.1 . . . . . 6 𝑋 = { ∈ (ℝ ↑𝑚 𝐼) ∣ finSupp 0}
86, 7syl6reqr 2823 . . . . 5 (𝐼𝑉𝑋 = (Base‘(ℝ^‘𝐼)))
9 mpt2eq12 6861 . . . . 5 ((𝑋 = (Base‘(ℝ^‘𝐼)) ∧ 𝑋 = (Base‘(ℝ^‘𝐼))) → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
108, 8, 9syl2anc 565 . . . 4 (𝐼𝑉 → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
115, 10eqtr4d 2807 . . 3 (𝐼𝑉𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
12113ad2ant1 1126 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
13 simprl 746 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
1413fveq1d 6334 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓𝑥) = (𝐹𝑥))
15 simprr 748 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑔 = 𝐺)
1615fveq1d 6334 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑔𝑥) = (𝐺𝑥))
1714, 16oveq12d 6810 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
1817oveq1d 6807 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
1918mpteq2dv 4877 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
2019oveq2d 6808 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))))
21 simp2 1130 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹𝑋)
227, 21rrxf 23402 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹:𝐼⟶ℝ)
2322ffvelrnda 6502 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
24 simp3 1131 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺𝑋)
257, 24rrxf 23402 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺:𝐼⟶ℝ)
2625ffvelrnda 6502 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
2723, 26resubcld 10659 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℝ)
2827resqcld 13241 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ ℝ)
29 eqid 2770 . . . . . . . 8 (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
3028, 29fmptd 6527 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ)
317, 21rrxfsupp 23403 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ∈ Fin)
327, 24rrxfsupp 23403 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ∈ Fin)
33 unfi 8382 . . . . . . . . . 10 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
3431, 32, 33syl2anc 565 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
357rrxmvallem 23405 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
36 ssfi 8335 . . . . . . . . 9 ((((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin ∧ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin)
3734, 35, 36syl2anc 565 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin)
38 mptexg 6627 . . . . . . . . . 10 (𝐼𝑉 → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V)
39 funmpt 6069 . . . . . . . . . . 11 Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
40 0cn 10233 . . . . . . . . . . 11 0 ∈ ℂ
41 funisfsupp 8435 . . . . . . . . . . 11 ((Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V ∧ 0 ∈ ℂ) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4239, 40, 41mp3an13 1562 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4338, 42syl 17 . . . . . . . . 9 (𝐼𝑉 → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
44433ad2ant1 1126 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4537, 44mpbird 247 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0)
46 simp1 1129 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
47 regsumsupp 20184 . . . . . . 7 (((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
4830, 45, 46, 47syl3anc 1475 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
49 suppssdm 7458 . . . . . . . . . . 11 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
5029dmmptss 5775 . . . . . . . . . . 11 dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ⊆ 𝐼
5149, 50sstri 3759 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼
5251a1i 11 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼)
5352sselda 3750 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → 𝑘𝐼)
54 eqidd 2771 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
55 simpr 471 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘)
5655fveq2d 6336 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐹𝑥) = (𝐹𝑘))
5755fveq2d 6336 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐺𝑥) = (𝐺𝑘))
5856, 57oveq12d 6810 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝑘) − (𝐺𝑘)))
5958oveq1d 6807 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝐹𝑥) − (𝐺𝑥))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
60 simpr 471 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → 𝑘𝐼)
61 ovexd 6824 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V)
6254, 59, 60, 61fvmptd 6430 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = (((𝐹𝑘) − (𝐺𝑘))↑2))
6362eqcomd 2776 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6453, 63syldan 571 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6564sumeq2dv 14640 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6648, 65eqtr4d 2807 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6766adantr 466 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6822ffvelrnda 6502 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
6968recnd 10269 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
7025ffvelrnda 6502 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
7170recnd 10269 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
7269, 71subcld 10593 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
7372sqcld 13212 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
7453, 73syldan 571 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
757, 21rrxsuppss 23404 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ⊆ 𝐼)
767, 24rrxsuppss 23404 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ⊆ 𝐼)
7775, 76unssd 3938 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
7877ssdifssd 3897 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ 𝐼)
7978sselda 3750 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘𝐼)
8079, 63syldan 571 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
8177ssdifd 3895 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
8281sselda 3750 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
83 ssid 3771 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)
8483a1i 11 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))
85 0cnd 10234 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
8630, 84, 46, 85suppssr 7477 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8782, 86syldan 571 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8880, 87eqtrd 2804 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
8935, 74, 88, 34fsumss 14663 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
9089adantr 466 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
9120, 67, 903eqtrd 2808 . . 3 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
9291fveq2d 6336 . 2 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
93 fvexd 6344 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ V)
9412, 92, 21, 24, 93ovmpt2d 6934 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  {crab 3064  Vcvv 3349  cdif 3718  cun 3719  wss 3721   class class class wbr 4784  cmpt 4861  dom cdm 5249  Fun wfun 6025  wf 6027  cfv 6031  (class class class)co 6792  cmpt2 6794   supp csupp 7445  𝑚 cmap 8008  Fincfn 8108   finSupp cfsupp 8430  cc 10135  cr 10136  0cc0 10137  cmin 10467  2c2 11271  cexp 13066  csqrt 14180  Σcsu 14623  Basecbs 16063  distcds 16157   Σg cgsu 16308  fldcrefld 20166  ℝ^crrx 23389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-0g 16309  df-gsum 16310  df-prds 16315  df-pws 16317  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-ghm 17865  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-rnghom 18924  df-drng 18958  df-field 18959  df-subrg 18987  df-staf 19054  df-srng 19055  df-lmod 19074  df-lss 19142  df-sra 19386  df-rgmod 19387  df-cnfld 19961  df-refld 20167  df-dsmm 20292  df-frlm 20307  df-nm 22606  df-tng 22608  df-tch 23187  df-rrx 23391
This theorem is referenced by:  rrxmfval  23407  rrxmet  23409  rrxdstprj1  23410
  Copyright terms: Public domain W3C validator