MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxmval Structured version   Visualization version   GIF version

Theorem rrxmval 24098
Description: The value of the Euclidean metric. Compare with rrnmval 35539. (Contributed by Thierry Arnoux, 30-Jun-2019.)
Hypotheses
Ref Expression
rrxmval.1 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
rrxmval.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
rrxmval ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
Distinct variable groups:   ,𝐹,𝑘   ,𝐺,𝑘   ,𝐼,𝑘   ,𝑉,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐷(,𝑘)   𝑋()

Proof of Theorem rrxmval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrxmval.d . . . . 5 𝐷 = (dist‘(ℝ^‘𝐼))
2 eqid 2759 . . . . . 6 (ℝ^‘𝐼) = (ℝ^‘𝐼)
3 eqid 2759 . . . . . 6 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
42, 3rrxds 24086 . . . . 5 (𝐼𝑉 → (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (dist‘(ℝ^‘𝐼)))
51, 4eqtr4id 2813 . . . 4 (𝐼𝑉𝐷 = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
6 rrxmval.1 . . . . . 6 𝑋 = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0}
72, 3rrxbase 24081 . . . . . 6 (𝐼𝑉 → (Base‘(ℝ^‘𝐼)) = { ∈ (ℝ ↑m 𝐼) ∣ finSupp 0})
86, 7eqtr4id 2813 . . . . 5 (𝐼𝑉𝑋 = (Base‘(ℝ^‘𝐼)))
9 mpoeq12 7222 . . . . 5 ((𝑋 = (Base‘(ℝ^‘𝐼)) ∧ 𝑋 = (Base‘(ℝ^‘𝐼))) → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
108, 8, 9syl2anc 588 . . . 4 (𝐼𝑉 → (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))) = (𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
115, 10eqtr4d 2797 . . 3 (𝐼𝑉𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
12113ad2ant1 1131 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))))))
13 simprl 771 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑓 = 𝐹)
1413fveq1d 6661 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓𝑥) = (𝐹𝑥))
15 simprr 773 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → 𝑔 = 𝐺)
1615fveq1d 6661 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑔𝑥) = (𝐺𝑥))
1714, 16oveq12d 7169 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓𝑥) − (𝑔𝑥)) = ((𝐹𝑥) − (𝐺𝑥)))
1817oveq1d 7166 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (((𝑓𝑥) − (𝑔𝑥))↑2) = (((𝐹𝑥) − (𝐺𝑥))↑2))
1918mpteq2dv 5129 . . . . 5 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
2019oveq2d 7167 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))))
21 simp2 1135 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹𝑋)
226, 21rrxf 24094 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐹:𝐼⟶ℝ)
2322ffvelrnda 6843 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
24 simp3 1136 . . . . . . . . . . . 12 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺𝑋)
256, 24rrxf 24094 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐺:𝐼⟶ℝ)
2625ffvelrnda 6843 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
2723, 26resubcld 11099 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℝ)
2827resqcld 13654 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑥𝐼) → (((𝐹𝑥) − (𝐺𝑥))↑2) ∈ ℝ)
2928fmpttd 6871 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ)
306, 21rrxfsupp 24095 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ∈ Fin)
316, 24rrxfsupp 24095 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ∈ Fin)
32 unfi 8811 . . . . . . . . . 10 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
3330, 31, 32syl2anc 588 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
346rrxmvallem 24097 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
3533, 34ssfid 8763 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin)
36 mptexg 6976 . . . . . . . . . 10 (𝐼𝑉 → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V)
37 funmpt 6374 . . . . . . . . . . 11 Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
38 0cn 10664 . . . . . . . . . . 11 0 ∈ ℂ
39 funisfsupp 8864 . . . . . . . . . . 11 ((Fun (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V ∧ 0 ∈ ℂ) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4037, 38, 39mp3an13 1450 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ∈ V → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4136, 40syl 17 . . . . . . . . 9 (𝐼𝑉 → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
42413ad2ant1 1131 . . . . . . . 8 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ↔ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ∈ Fin))
4335, 42mpbird 260 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0)
44 simp1 1134 . . . . . . 7 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 𝐼𝑉)
45 regsumsupp 20380 . . . . . . 7 (((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)):𝐼⟶ℝ ∧ (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) finSupp 0 ∧ 𝐼𝑉) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
4629, 43, 44, 45syl3anc 1369 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
47 suppssdm 7852 . . . . . . . . . . 11 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
48 eqid 2759 . . . . . . . . . . . 12 (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))
4948dmmptss 6071 . . . . . . . . . . 11 dom (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) ⊆ 𝐼
5047, 49sstri 3902 . . . . . . . . . 10 ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼
5150a1i 11 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ 𝐼)
5251sselda 3893 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → 𝑘𝐼)
53 eqidd 2760 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) = (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)))
54 simpr 489 . . . . . . . . . . . . 13 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → 𝑥 = 𝑘)
5554fveq2d 6663 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐹𝑥) = (𝐹𝑘))
5654fveq2d 6663 . . . . . . . . . . . 12 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (𝐺𝑥) = (𝐺𝑘))
5755, 56oveq12d 7169 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → ((𝐹𝑥) − (𝐺𝑥)) = ((𝐹𝑘) − (𝐺𝑘)))
5857oveq1d 7166 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) ∧ 𝑥 = 𝑘) → (((𝐹𝑥) − (𝐺𝑥))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
59 simpr 489 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → 𝑘𝐼)
60 ovexd 7186 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ V)
6153, 58, 59, 60fvmptd 6767 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = (((𝐹𝑘) − (𝐺𝑘))↑2))
6261eqcomd 2765 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6352, 62syldan 595 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6463sumeq2dv 15101 . . . . . 6 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
6546, 64eqtr4d 2797 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6665adantr 485 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))) = Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2))
6722ffvelrnda 6843 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
6867recnd 10700 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℂ)
6925ffvelrnda 6843 . . . . . . . . . 10 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
7069recnd 10700 . . . . . . . . 9 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℂ)
7168, 70subcld 11028 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
7271sqcld 13551 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
7352, 72syldan 595 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℂ)
746, 21rrxsuppss 24096 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹 supp 0) ⊆ 𝐼)
756, 24rrxsuppss 24096 . . . . . . . . . . 11 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐺 supp 0) ⊆ 𝐼)
7674, 75unssd 4092 . . . . . . . . . 10 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ⊆ 𝐼)
7776ssdifssd 4049 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ 𝐼)
7877sselda 3893 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘𝐼)
7978, 62syldan 595 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘))
8076ssdifd 4047 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)) ⊆ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
8180sselda 3893 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)))
82 ssidd 3916 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0) ⊆ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))
83 0cnd 10665 . . . . . . . . 9 ((𝐼𝑉𝐹𝑋𝐺𝑋) → 0 ∈ ℂ)
8429, 82, 44, 83suppssr 7871 . . . . . . . 8 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (𝐼 ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8581, 84syldan 595 . . . . . . 7 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2))‘𝑘) = 0)
8679, 85eqtrd 2794 . . . . . 6 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ 𝑘 ∈ (((𝐹 supp 0) ∪ (𝐺 supp 0)) ∖ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0))) → (((𝐹𝑘) − (𝐺𝑘))↑2) = 0)
8734, 73, 86, 33fsumss 15123 . . . . 5 ((𝐼𝑉𝐹𝑋𝐺𝑋) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
8887adantr 485 . . . 4 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → Σ𝑘 ∈ ((𝑥𝐼 ↦ (((𝐹𝑥) − (𝐺𝑥))↑2)) supp 0)(((𝐹𝑘) − (𝐺𝑘))↑2) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
8920, 66, 883eqtrd 2798 . . 3 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2))) = Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2))
9089fveq2d 6663 . 2 (((𝐼𝑉𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
91 fvexd 6674 . 2 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ V)
9212, 90, 21, 24, 91ovmpod 7298 1 ((𝐼𝑉𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘Σ𝑘 ∈ ((𝐹 supp 0) ∪ (𝐺 supp 0))(((𝐹𝑘) − (𝐺𝑘))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  {crab 3075  Vcvv 3410  cdif 3856  cun 3857  wss 3859   class class class wbr 5033  cmpt 5113  dom cdm 5525  Fun wfun 6330  wf 6332  cfv 6336  (class class class)co 7151  cmpo 7153   supp csupp 7836  m cmap 8417  Fincfn 8528   finSupp cfsupp 8859  cc 10566  cr 10567  0cc0 10568  cmin 10901  2c2 11722  cexp 13472  csqrt 14633  Σcsu 15083  Basecbs 16534  distcds 16625   Σg cgsu 16765  fldcrefld 20362  ℝ^crrx 24076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646  ax-addf 10647  ax-mulf 10648
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-tpos 7903  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8860  df-sup 8932  df-oi 9000  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-rp 12424  df-fz 12933  df-fzo 13076  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-clim 14886  df-sum 15084  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-starv 16631  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-hom 16640  df-cco 16641  df-0g 16766  df-gsum 16767  df-prds 16772  df-pws 16774  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-mhm 18015  df-grp 18165  df-minusg 18166  df-sbg 18167  df-subg 18336  df-ghm 18416  df-cntz 18507  df-cmn 18968  df-abl 18969  df-mgp 19301  df-ur 19313  df-ring 19360  df-cring 19361  df-oppr 19437  df-dvdsr 19455  df-unit 19456  df-invr 19486  df-dvr 19497  df-rnghom 19531  df-drng 19565  df-field 19566  df-subrg 19594  df-staf 19677  df-srng 19678  df-lmod 19697  df-lss 19765  df-sra 20005  df-rgmod 20006  df-cnfld 20160  df-refld 20363  df-dsmm 20490  df-frlm 20505  df-nm 23277  df-tng 23279  df-tcph 23863  df-rrx 24078
This theorem is referenced by:  rrxmfval  24099  rrxmet  24101  rrxdstprj1  24102
  Copyright terms: Public domain W3C validator