Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtrclexlem Structured version   Visualization version   GIF version

Theorem rtrclexlem 43612
Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.)
Assertion
Ref Expression
rtrclexlem (𝑅𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V)

Proof of Theorem rtrclexlem
StepHypRef Expression
1 dmexg 7880 . . . 4 (𝑅𝑉 → dom 𝑅 ∈ V)
2 rnexg 7881 . . . 4 (𝑅𝑉 → ran 𝑅 ∈ V)
31, 2unexd 7733 . . 3 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
4 sqxpexg 7734 . . 3 ((dom 𝑅 ∪ ran 𝑅) ∈ V → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V)
53, 4syl 17 . 2 (𝑅𝑉 → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V)
6 unexg 7722 . 2 ((𝑅𝑉 ∧ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V)
75, 6mpdan 687 1 (𝑅𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450  cun 3915   × cxp 5639  dom cdm 5641  ran crn 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  rtrclex  43613
  Copyright terms: Public domain W3C validator