Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtrclexlem Structured version   Visualization version   GIF version

Theorem rtrclexlem 40791
Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.)
Assertion
Ref Expression
rtrclexlem (𝑅𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V)

Proof of Theorem rtrclexlem
StepHypRef Expression
1 dmexg 7636 . . . 4 (𝑅𝑉 → dom 𝑅 ∈ V)
2 rnexg 7637 . . . 4 (𝑅𝑉 → ran 𝑅 ∈ V)
3 unexg 7492 . . . 4 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
41, 2, 3syl2anc 587 . . 3 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
5 sqxpexg 7498 . . 3 ((dom 𝑅 ∪ ran 𝑅) ∈ V → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V)
64, 5syl 17 . 2 (𝑅𝑉 → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V)
7 unexg 7492 . 2 ((𝑅𝑉 ∧ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V)
86, 7mpdan 687 1 (𝑅𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  Vcvv 3398  cun 3841   × cxp 5523  dom cdm 5525  ran crn 5526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-xp 5531  df-rel 5532  df-cnv 5533  df-dm 5535  df-rn 5536
This theorem is referenced by:  rtrclex  40792
  Copyright terms: Public domain W3C validator