![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rtrclexlem | Structured version Visualization version GIF version |
Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.) |
Ref | Expression |
---|---|
rtrclexlem | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7924 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
2 | rnexg 7925 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
3 | 1, 2 | unexd 7773 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
4 | sqxpexg 7774 | . . 3 ⊢ ((dom 𝑅 ∪ ran 𝑅) ∈ V → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
6 | unexg 7762 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) | |
7 | 5, 6 | mpdan 687 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 × cxp 5687 dom cdm 5689 ran crn 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: rtrclex 43607 |
Copyright terms: Public domain | W3C validator |