| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rtrclexlem | Structured version Visualization version GIF version | ||
| Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| rtrclexlem | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7902 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
| 2 | rnexg 7903 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
| 3 | 1, 2 | unexd 7753 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
| 4 | sqxpexg 7754 | . . 3 ⊢ ((dom 𝑅 ∪ ran 𝑅) ∈ V → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
| 6 | unexg 7742 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) | |
| 7 | 5, 6 | mpdan 687 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 ∪ cun 3929 × cxp 5657 dom cdm 5659 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: rtrclex 43608 |
| Copyright terms: Public domain | W3C validator |