Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rtrclexlem | Structured version Visualization version GIF version |
Description: Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.) |
Ref | Expression |
---|---|
rtrclexlem | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7750 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → dom 𝑅 ∈ V) | |
2 | rnexg 7751 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → ran 𝑅 ∈ V) | |
3 | unexg 7599 | . . . 4 ⊢ ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V) |
5 | sqxpexg 7605 | . . 3 ⊢ ((dom 𝑅 ∪ ran 𝑅) ∈ V → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) |
7 | unexg 7599 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅)) ∈ V) → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) | |
8 | 6, 7 | mpdan 684 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 × cxp 5587 dom cdm 5589 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: rtrclex 41225 |
Copyright terms: Public domain | W3C validator |