MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrpropnb Structured version   Visualization version   GIF version

Theorem rusgrpropnb 29529
Description: The properties of a k-regular simple graph expressed with neighbors. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypothesis
Ref Expression
rusgrpropnb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrpropnb (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hint:   𝑉(𝑣)

Proof of Theorem rusgrpropnb
StepHypRef Expression
1 rusgrpropnb.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2729 . . 3 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
31, 2rusgrprop0 29513 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
4 simp1 1136 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐺 ∈ USGraph)
5 simp2 1137 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0*)
61hashnbusgrvd 29474 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
76adantlr 715 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
8 eqeq2 2741 . . . . . . 7 (𝐾 = ((VtxDeg‘𝐺)‘𝑣) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)))
98eqcoms 2737 . . . . . 6 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)))
107, 9syl5ibrcom 247 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
1110ralimdva 3141 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
12113impia 1117 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)
134, 5, 123jca 1128 . 2 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
143, 13syl 17 1 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  cfv 6482  (class class class)co 7349  0*cxnn0 12457  chash 14237  Vtxcvtx 28941  USGraphcusgr 29094   NeighbVtx cnbgr 29277  VtxDegcvtxdg 29411   RegUSGraph crusgr 29502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-xadd 13015  df-fz 13411  df-hash 14238  df-edg 28993  df-uhgr 29003  df-ushgr 29004  df-upgr 29027  df-umgr 29028  df-uspgr 29095  df-usgr 29096  df-nbgr 29278  df-vtxdg 29412  df-rgr 29503  df-rusgr 29504
This theorem is referenced by:  rusgrpropedg  29530  rusgrpropadjvtx  29531  rusgr1vtx  29534  numclwwlk1  30305
  Copyright terms: Public domain W3C validator