![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrpropnb | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph expressed with neighbors. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
rusgrpropnb.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
rusgrpropnb | β’ (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrpropnb.v | . . 3 β’ π = (VtxβπΊ) | |
2 | eqid 2727 | . . 3 β’ (VtxDegβπΊ) = (VtxDegβπΊ) | |
3 | 1, 2 | rusgrprop0 29355 | . 2 β’ (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ)) |
4 | simp1 1134 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β πΊ β USGraph) | |
5 | simp2 1135 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β πΎ β β0*) | |
6 | 1 | hashnbusgrvd 29316 | . . . . . . 7 β’ ((πΊ β USGraph β§ π£ β π) β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£)) |
7 | 6 | adantlr 714 | . . . . . 6 β’ (((πΊ β USGraph β§ πΎ β β0*) β§ π£ β π) β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£)) |
8 | eqeq2 2739 | . . . . . . 7 β’ (πΎ = ((VtxDegβπΊ)βπ£) β ((β―β(πΊ NeighbVtx π£)) = πΎ β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£))) | |
9 | 8 | eqcoms 2735 | . . . . . 6 β’ (((VtxDegβπΊ)βπ£) = πΎ β ((β―β(πΊ NeighbVtx π£)) = πΎ β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£))) |
10 | 7, 9 | syl5ibrcom 246 | . . . . 5 β’ (((πΊ β USGraph β§ πΎ β β0*) β§ π£ β π) β (((VtxDegβπΊ)βπ£) = πΎ β (β―β(πΊ NeighbVtx π£)) = πΎ)) |
11 | 10 | ralimdva 3162 | . . . 4 β’ ((πΊ β USGraph β§ πΎ β β0*) β (βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ β βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
12 | 11 | 3impia 1115 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ) |
13 | 4, 5, 12 | 3jca 1126 | . 2 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
14 | 3, 13 | syl 17 | 1 β’ (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 βwral 3056 class class class wbr 5142 βcfv 6542 (class class class)co 7414 β0*cxnn0 12560 β―chash 14307 Vtxcvtx 28783 USGraphcusgr 28936 NeighbVtx cnbgr 29119 VtxDegcvtxdg 29253 RegUSGraph crusgr 29344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-xnn0 12561 df-z 12575 df-uz 12839 df-xadd 13111 df-fz 13503 df-hash 14308 df-edg 28835 df-uhgr 28845 df-ushgr 28846 df-upgr 28869 df-umgr 28870 df-uspgr 28937 df-usgr 28938 df-nbgr 29120 df-vtxdg 29254 df-rgr 29345 df-rusgr 29346 |
This theorem is referenced by: rusgrpropedg 29372 rusgrpropadjvtx 29373 rusgr1vtx 29376 numclwwlk1 30145 |
Copyright terms: Public domain | W3C validator |