Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrpropnb Structured version   Visualization version   GIF version

Theorem rusgrpropnb 27377
 Description: The properties of a k-regular simple graph expressed with neighbors. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypothesis
Ref Expression
rusgrpropnb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
rusgrpropnb (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾
Allowed substitution hint:   𝑉(𝑣)

Proof of Theorem rusgrpropnb
StepHypRef Expression
1 rusgrpropnb.v . . 3 𝑉 = (Vtx‘𝐺)
2 eqid 2801 . . 3 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
31, 2rusgrprop0 27361 . 2 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
4 simp1 1133 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐺 ∈ USGraph)
5 simp2 1134 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0*)
61hashnbusgrvd 27322 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
76adantlr 714 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
8 eqeq2 2813 . . . . . . 7 (𝐾 = ((VtxDeg‘𝐺)‘𝑣) → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)))
98eqcoms 2809 . . . . . 6 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ((♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾 ↔ (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)))
107, 9syl5ibrcom 250 . . . . 5 (((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) ∧ 𝑣𝑉) → (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
1110ralimdva 3147 . . . 4 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
12113impia 1114 . . 3 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾)
134, 5, 123jca 1125 . 2 ((𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
143, 13syl 17 1 (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣𝑉 (♯‘(𝐺 NeighbVtx 𝑣)) = 𝐾))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  ℕ0*cxnn0 11959  ♯chash 13690  Vtxcvtx 26793  USGraphcusgr 26946   NeighbVtx cnbgr 27126  VtxDegcvtxdg 27259   RegUSGraph crusgr 27350 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-xadd 12500  df-fz 12890  df-hash 13691  df-edg 26845  df-uhgr 26855  df-ushgr 26856  df-upgr 26879  df-umgr 26880  df-uspgr 26947  df-usgr 26948  df-nbgr 27127  df-vtxdg 27260  df-rgr 27351  df-rusgr 27352 This theorem is referenced by:  rusgrpropedg  27378  rusgrpropadjvtx  27379  rusgr1vtx  27382  numclwwlk1  28150
 Copyright terms: Public domain W3C validator