![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrpropnb | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph expressed with neighbors. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
rusgrpropnb.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
rusgrpropnb | β’ (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrpropnb.v | . . 3 β’ π = (VtxβπΊ) | |
2 | eqid 2725 | . . 3 β’ (VtxDegβπΊ) = (VtxDegβπΊ) | |
3 | 1, 2 | rusgrprop0 29423 | . 2 β’ (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ)) |
4 | simp1 1133 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β πΊ β USGraph) | |
5 | simp2 1134 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β πΎ β β0*) | |
6 | 1 | hashnbusgrvd 29384 | . . . . . . 7 β’ ((πΊ β USGraph β§ π£ β π) β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£)) |
7 | 6 | adantlr 713 | . . . . . 6 β’ (((πΊ β USGraph β§ πΎ β β0*) β§ π£ β π) β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£)) |
8 | eqeq2 2737 | . . . . . . 7 β’ (πΎ = ((VtxDegβπΊ)βπ£) β ((β―β(πΊ NeighbVtx π£)) = πΎ β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£))) | |
9 | 8 | eqcoms 2733 | . . . . . 6 β’ (((VtxDegβπΊ)βπ£) = πΎ β ((β―β(πΊ NeighbVtx π£)) = πΎ β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£))) |
10 | 7, 9 | syl5ibrcom 246 | . . . . 5 β’ (((πΊ β USGraph β§ πΎ β β0*) β§ π£ β π) β (((VtxDegβπΊ)βπ£) = πΎ β (β―β(πΊ NeighbVtx π£)) = πΎ)) |
11 | 10 | ralimdva 3157 | . . . 4 β’ ((πΊ β USGraph β§ πΎ β β0*) β (βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ β βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
12 | 11 | 3impia 1114 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ) |
13 | 4, 5, 12 | 3jca 1125 | . 2 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
14 | 3, 13 | syl 17 | 1 β’ (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3051 class class class wbr 5143 βcfv 6542 (class class class)co 7415 β0*cxnn0 12572 β―chash 14319 Vtxcvtx 28851 USGraphcusgr 29004 NeighbVtx cnbgr 29187 VtxDegcvtxdg 29321 RegUSGraph crusgr 29412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-oadd 8487 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-xadd 13123 df-fz 13515 df-hash 14320 df-edg 28903 df-uhgr 28913 df-ushgr 28914 df-upgr 28937 df-umgr 28938 df-uspgr 29005 df-usgr 29006 df-nbgr 29188 df-vtxdg 29322 df-rgr 29413 df-rusgr 29414 |
This theorem is referenced by: rusgrpropedg 29440 rusgrpropadjvtx 29441 rusgr1vtx 29444 numclwwlk1 30213 |
Copyright terms: Public domain | W3C validator |