![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrpropnb | Structured version Visualization version GIF version |
Description: The properties of a k-regular simple graph expressed with neighbors. (Contributed by Alexander van der Vekens, 26-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
rusgrpropnb.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
rusgrpropnb | β’ (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rusgrpropnb.v | . . 3 β’ π = (VtxβπΊ) | |
2 | eqid 2732 | . . 3 β’ (VtxDegβπΊ) = (VtxDegβπΊ) | |
3 | 1, 2 | rusgrprop0 28813 | . 2 β’ (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ)) |
4 | simp1 1136 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β πΊ β USGraph) | |
5 | simp2 1137 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β πΎ β β0*) | |
6 | 1 | hashnbusgrvd 28774 | . . . . . . 7 β’ ((πΊ β USGraph β§ π£ β π) β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£)) |
7 | 6 | adantlr 713 | . . . . . 6 β’ (((πΊ β USGraph β§ πΎ β β0*) β§ π£ β π) β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£)) |
8 | eqeq2 2744 | . . . . . . 7 β’ (πΎ = ((VtxDegβπΊ)βπ£) β ((β―β(πΊ NeighbVtx π£)) = πΎ β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£))) | |
9 | 8 | eqcoms 2740 | . . . . . 6 β’ (((VtxDegβπΊ)βπ£) = πΎ β ((β―β(πΊ NeighbVtx π£)) = πΎ β (β―β(πΊ NeighbVtx π£)) = ((VtxDegβπΊ)βπ£))) |
10 | 7, 9 | syl5ibrcom 246 | . . . . 5 β’ (((πΊ β USGraph β§ πΎ β β0*) β§ π£ β π) β (((VtxDegβπΊ)βπ£) = πΎ β (β―β(πΊ NeighbVtx π£)) = πΎ)) |
11 | 10 | ralimdva 3167 | . . . 4 β’ ((πΊ β USGraph β§ πΎ β β0*) β (βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ β βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
12 | 11 | 3impia 1117 | . . 3 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ) |
13 | 4, 5, 12 | 3jca 1128 | . 2 β’ ((πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = πΎ) β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
14 | 3, 13 | syl 17 | 1 β’ (πΊ RegUSGraph πΎ β (πΊ β USGraph β§ πΎ β β0* β§ βπ£ β π (β―β(πΊ NeighbVtx π£)) = πΎ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5147 βcfv 6540 (class class class)co 7405 β0*cxnn0 12540 β―chash 14286 Vtxcvtx 28245 USGraphcusgr 28398 NeighbVtx cnbgr 28578 VtxDegcvtxdg 28711 RegUSGraph crusgr 28802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-xadd 13089 df-fz 13481 df-hash 14287 df-edg 28297 df-uhgr 28307 df-ushgr 28308 df-upgr 28331 df-umgr 28332 df-uspgr 28399 df-usgr 28400 df-nbgr 28579 df-vtxdg 28712 df-rgr 28803 df-rusgr 28804 |
This theorem is referenced by: rusgrpropedg 28830 rusgrpropadjvtx 28831 rusgr1vtx 28834 numclwwlk1 29603 |
Copyright terms: Public domain | W3C validator |