![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frusgrnn0 | Structured version Visualization version GIF version |
Description: In a nonempty finite k-regular simple graph, the degree of each vertex is finite. (Contributed by AV, 7-May-2021.) |
Ref | Expression |
---|---|
frusgrnn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
frusgrnn0 | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺RegUSGraph𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 1144 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺RegUSGraph𝐾 ∧ 𝑉 ≠ ∅) → (𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅)) | |
2 | frusgrnn0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | eqid 2771 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
4 | 2, 3 | rusgrprop0 26698 | . . . 4 ⊢ (𝐺RegUSGraph𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾)) |
5 | 4 | simp3d 1138 | . . 3 ⊢ (𝐺RegUSGraph𝐾 → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) |
6 | 5 | 3ad2ant2 1128 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺RegUSGraph𝐾 ∧ 𝑉 ≠ ∅) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) |
7 | 2, 3 | fusgrregdegfi 26700 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → 𝐾 ∈ ℕ0)) |
8 | 1, 6, 7 | sylc 65 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺RegUSGraph𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∅c0 4063 class class class wbr 4786 ‘cfv 6031 ℕ0cn0 11494 ℕ0*cxnn0 11565 Vtxcvtx 26095 USGraphcusgr 26266 FinUSGraphcfusgr 26431 VtxDegcvtxdg 26596 RegUSGraphcrusgr 26687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-xadd 12152 df-fz 12534 df-hash 13322 df-vtx 26097 df-iedg 26098 df-edg 26161 df-uhgr 26174 df-upgr 26198 df-umgr 26199 df-uspgr 26267 df-usgr 26268 df-fusgr 26432 df-vtxdg 26597 df-rgr 26688 df-rusgr 26689 |
This theorem is referenced by: rusgrnumwwlks 27123 rusgrnumwwlk 27124 numclwwlk1 27548 numclwlk1lem1 27560 numclwwlk3 27584 numclwwlk5 27587 numclwwlk7lem 27588 |
Copyright terms: Public domain | W3C validator |