Step | Hyp | Ref
| Expression |
1 | | eqidd 2733 |
. 2
⊢ (𝜑 → (Base‘𝑌) = (Base‘𝑌)) |
2 | | eqidd 2733 |
. 2
⊢ (𝜑 → (+g‘𝑌) = (+g‘𝑌)) |
3 | | prdssgrpd.y |
. . . 4
⊢ 𝑌 = (𝑆Xs𝑅) |
4 | | eqid 2732 |
. . . 4
⊢
(Base‘𝑌) =
(Base‘𝑌) |
5 | | eqid 2732 |
. . . 4
⊢
(+g‘𝑌) = (+g‘𝑌) |
6 | | prdssgrpd.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
7 | 6 | elexd 3494 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ V) |
8 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑆 ∈ V) |
9 | | prdssgrpd.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
10 | 9 | elexd 3494 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ V) |
11 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝐼 ∈ V) |
12 | | prdssgrpd.r |
. . . . 5
⊢ (𝜑 → 𝑅:𝐼⟶Smgrp) |
13 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Smgrp) |
14 | | simprl 769 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑌)) |
15 | | simprr 771 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌)) |
16 | 3, 4, 5, 8, 11, 13, 14, 15 | prdsplusgsgrpcl 18622 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝑎(+g‘𝑌)𝑏) ∈ (Base‘𝑌)) |
17 | 16 | 3impb 1115 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g‘𝑌)𝑏) ∈ (Base‘𝑌)) |
18 | 12 | ffvelcdmda 7086 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Smgrp) |
19 | 18 | adantlr 713 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑅‘𝑦) ∈ Smgrp) |
20 | 7 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑆 ∈ V) |
21 | 10 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝐼 ∈ V) |
22 | 12 | ffnd 6718 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn 𝐼) |
23 | 22 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑅 Fn 𝐼) |
24 | | simplr1 1215 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑎 ∈ (Base‘𝑌)) |
25 | | simpr 485 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑦 ∈ 𝐼) |
26 | 3, 4, 20, 21, 23, 24, 25 | prdsbasprj 17417 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑎‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
27 | | simplr2 1216 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑏 ∈ (Base‘𝑌)) |
28 | 3, 4, 20, 21, 23, 27, 25 | prdsbasprj 17417 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑏‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
29 | | simplr3 1217 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → 𝑐 ∈ (Base‘𝑌)) |
30 | 3, 4, 20, 21, 23, 29, 25 | prdsbasprj 17417 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (𝑐‘𝑦) ∈ (Base‘(𝑅‘𝑦))) |
31 | | eqid 2732 |
. . . . . . 7
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
32 | | eqid 2732 |
. . . . . . 7
⊢
(+g‘(𝑅‘𝑦)) = (+g‘(𝑅‘𝑦)) |
33 | 31, 32 | sgrpass 18615 |
. . . . . 6
⊢ (((𝑅‘𝑦) ∈ Smgrp ∧ ((𝑎‘𝑦) ∈ (Base‘(𝑅‘𝑦)) ∧ (𝑏‘𝑦) ∈ (Base‘(𝑅‘𝑦)) ∧ (𝑐‘𝑦) ∈ (Base‘(𝑅‘𝑦)))) → (((𝑎‘𝑦)(+g‘(𝑅‘𝑦))(𝑏‘𝑦))(+g‘(𝑅‘𝑦))(𝑐‘𝑦)) = ((𝑎‘𝑦)(+g‘(𝑅‘𝑦))((𝑏‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
34 | 19, 26, 28, 30, 33 | syl13anc 1372 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (((𝑎‘𝑦)(+g‘(𝑅‘𝑦))(𝑏‘𝑦))(+g‘(𝑅‘𝑦))(𝑐‘𝑦)) = ((𝑎‘𝑦)(+g‘(𝑅‘𝑦))((𝑏‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
35 | 3, 4, 20, 21, 23, 24, 27, 5, 25 | prdsplusgfval 17419 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎(+g‘𝑌)𝑏)‘𝑦) = ((𝑎‘𝑦)(+g‘(𝑅‘𝑦))(𝑏‘𝑦))) |
36 | 35 | oveq1d 7423 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (((𝑎(+g‘𝑌)𝑏)‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦)) = (((𝑎‘𝑦)(+g‘(𝑅‘𝑦))(𝑏‘𝑦))(+g‘(𝑅‘𝑦))(𝑐‘𝑦))) |
37 | 3, 4, 20, 21, 23, 27, 29, 5, 25 | prdsplusgfval 17419 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑏(+g‘𝑌)𝑐)‘𝑦) = ((𝑏‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦))) |
38 | 37 | oveq2d 7424 |
. . . . 5
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → ((𝑎‘𝑦)(+g‘(𝑅‘𝑦))((𝑏(+g‘𝑌)𝑐)‘𝑦)) = ((𝑎‘𝑦)(+g‘(𝑅‘𝑦))((𝑏‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
39 | 34, 36, 38 | 3eqtr4d 2782 |
. . . 4
⊢ (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦 ∈ 𝐼) → (((𝑎(+g‘𝑌)𝑏)‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦)) = ((𝑎‘𝑦)(+g‘(𝑅‘𝑦))((𝑏(+g‘𝑌)𝑐)‘𝑦))) |
40 | 39 | mpteq2dva 5248 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦 ∈ 𝐼 ↦ (((𝑎(+g‘𝑌)𝑏)‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦))) = (𝑦 ∈ 𝐼 ↦ ((𝑎‘𝑦)(+g‘(𝑅‘𝑦))((𝑏(+g‘𝑌)𝑐)‘𝑦)))) |
41 | 7 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ V) |
42 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V) |
43 | 22 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼) |
44 | 16 | 3adantr3 1171 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g‘𝑌)𝑏) ∈ (Base‘𝑌)) |
45 | | simpr3 1196 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌)) |
46 | 3, 4, 41, 42, 43, 44, 45, 5 | prdsplusgval 17418 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g‘𝑌)𝑏)(+g‘𝑌)𝑐) = (𝑦 ∈ 𝐼 ↦ (((𝑎(+g‘𝑌)𝑏)‘𝑦)(+g‘(𝑅‘𝑦))(𝑐‘𝑦)))) |
47 | | simpr1 1194 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑌)) |
48 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Smgrp) |
49 | | simpr2 1195 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌)) |
50 | 3, 4, 5, 41, 42, 48, 49, 45 | prdsplusgsgrpcl 18622 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏(+g‘𝑌)𝑐) ∈ (Base‘𝑌)) |
51 | 3, 4, 41, 42, 43, 47, 50, 5 | prdsplusgval 17418 |
. . 3
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g‘𝑌)(𝑏(+g‘𝑌)𝑐)) = (𝑦 ∈ 𝐼 ↦ ((𝑎‘𝑦)(+g‘(𝑅‘𝑦))((𝑏(+g‘𝑌)𝑐)‘𝑦)))) |
52 | 40, 46, 51 | 3eqtr4d 2782 |
. 2
⊢ ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g‘𝑌)𝑏)(+g‘𝑌)𝑐) = (𝑎(+g‘𝑌)(𝑏(+g‘𝑌)𝑐))) |
53 | 3 | ovexi 7442 |
. . 3
⊢ 𝑌 ∈ V |
54 | 53 | a1i 11 |
. 2
⊢ (𝜑 → 𝑌 ∈ V) |
55 | 1, 2, 17, 52, 54 | issgrpd 18620 |
1
⊢ (𝜑 → 𝑌 ∈ Smgrp) |