Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > shle0 | Structured version Visualization version GIF version |
Description: No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shle0 | ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sh0le 29703 | . . 3 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | |
2 | 1 | biantrud 531 | . 2 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ (𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴))) |
3 | eqss 3932 | . 2 ⊢ (𝐴 = 0ℋ ↔ (𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴)) | |
4 | 2, 3 | bitr4di 288 | 1 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 Sℋ csh 29191 0ℋc0h 29198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-sh 29470 df-ch0 29516 |
This theorem is referenced by: chle0 29706 shne0i 29711 shs00i 29713 cdj3lem1 30697 |
Copyright terms: Public domain | W3C validator |