Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  shle0 Structured version   Visualization version   GIF version

Theorem shle0 28873
 Description: No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shle0 (𝐴S → (𝐴 ⊆ 0𝐴 = 0))

Proof of Theorem shle0
StepHypRef Expression
1 sh0le 28871 . . 3 (𝐴S → 0𝐴)
21biantrud 527 . 2 (𝐴S → (𝐴 ⊆ 0 ↔ (𝐴 ⊆ 0 ∧ 0𝐴)))
3 eqss 3835 . 2 (𝐴 = 0 ↔ (𝐴 ⊆ 0 ∧ 0𝐴))
42, 3syl6bbr 281 1 (𝐴S → (𝐴 ⊆ 0𝐴 = 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2106   ⊆ wss 3791   Sℋ csh 28357  0ℋc0h 28364 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-hilex 28428 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-rab 3098  df-v 3399  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-br 4887  df-opab 4949  df-xp 5361  df-cnv 5363  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-sh 28636  df-ch0 28682 This theorem is referenced by:  chle0  28874  shne0i  28879  shs00i  28881  cdj3lem1  29865
 Copyright terms: Public domain W3C validator