| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shle0 | Structured version Visualization version GIF version | ||
| Description: No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shle0 | ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sh0le 31369 | . . 3 ⊢ (𝐴 ∈ Sℋ → 0ℋ ⊆ 𝐴) | |
| 2 | 1 | biantrud 531 | . 2 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ (𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴))) |
| 3 | eqss 3962 | . 2 ⊢ (𝐴 = 0ℋ ↔ (𝐴 ⊆ 0ℋ ∧ 0ℋ ⊆ 𝐴)) | |
| 4 | 2, 3 | bitr4di 289 | 1 ⊢ (𝐴 ∈ Sℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 Sℋ csh 30857 0ℋc0h 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-sh 31136 df-ch0 31182 |
| This theorem is referenced by: chle0 31372 shne0i 31377 shs00i 31379 cdj3lem1 32363 |
| Copyright terms: Public domain | W3C validator |