MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbas Structured version   Visualization version   GIF version

Theorem psrbas 21057
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
psrbas.k 𝐾 = (Base‘𝑅)
psrbas.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbas.b 𝐵 = (Base‘𝑆)
psrbas.i (𝜑𝐼𝑉)
Assertion
Ref Expression
psrbas (𝜑𝐵 = (𝐾m 𝐷))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrbas
Dummy variables 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrbas.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2738 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2738 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2738 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrbas.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 eqidd 2739 . . . . 5 ((𝜑𝑅 ∈ V) → (𝐾m 𝐷) = (𝐾m 𝐷))
8 eqid 2738 . . . . 5 ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷))) = ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))
9 eqid 2738 . . . . 5 (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥))))))) = (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))
10 eqid 2738 . . . . 5 (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔)) = (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))
11 eqidd 2739 . . . . 5 ((𝜑𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
12 psrbas.i . . . . . 6 (𝜑𝐼𝑉)
1312adantr 480 . . . . 5 ((𝜑𝑅 ∈ V) → 𝐼𝑉)
14 simpr 484 . . . . 5 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14psrval 21028 . . . 4 ((𝜑𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6760 . . 3 ((𝜑𝑅 ∈ V) → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
17 psrbas.b . . 3 𝐵 = (Base‘𝑆)
18 ovex 7288 . . . 4 (𝐾m 𝐷) ∈ V
19 psrvalstr 21029 . . . . 5 ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
20 baseid 16843 . . . . 5 Base = Slot (Base‘ndx)
21 snsstp1 4746 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩}
22 ssun1 4102 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2321, 22sstri 3926 . . . . 5 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2419, 20, 23strfv 16833 . . . 4 ((𝐾m 𝐷) ∈ V → (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2518, 24ax-mp 5 . . 3 (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
2616, 17, 253eqtr4g 2804 . 2 ((𝜑𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
27 reldmpsr 21027 . . . . . . . 8 Rel dom mPwSer
2827ovprc2 7295 . . . . . . 7 𝑅 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
2928adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
301, 29eqtrid 2790 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝑆 = ∅)
3130fveq2d 6760 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
32 base0 16845 . . . 4 ∅ = (Base‘∅)
3331, 17, 323eqtr4g 2804 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = ∅)
34 fvprc 6748 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
3534adantl 481 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑅) = ∅)
362, 35eqtrid 2790 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐾 = ∅)
376fczpsrbag 21036 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3812, 37syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3938adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑥𝐼 ↦ 0) ∈ 𝐷)
4039ne0d 4266 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐷 ≠ ∅)
412fvexi 6770 . . . . 5 𝐾 ∈ V
42 ovex 7288 . . . . . 6 (ℕ0m 𝐼) ∈ V
436, 42rabex2 5253 . . . . 5 𝐷 ∈ V
4441, 43map0 8633 . . . 4 ((𝐾m 𝐷) = ∅ ↔ (𝐾 = ∅ ∧ 𝐷 ≠ ∅))
4536, 40, 44sylanbrc 582 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐾m 𝐷) = ∅)
4633, 45eqtr4d 2781 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
4726, 46pm2.61dan 809 1 (𝜑𝐵 = (𝐾m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  cun 3881  c0 4253  {csn 4558  {ctp 4562  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  cres 5582  cima 5583  cfv 6418  (class class class)co 7255  cmpo 7257  f cof 7509  r cofr 7510  m cmap 8573  Fincfn 8691  0cc0 10802  1c1 10803  cle 10941  cmin 11135  cn 11903  9c9 11965  0cn0 12163  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  TopSetcts 16894  TopOpenctopn 17049  tcpt 17066   Σg cgsu 17068   mPwSer cmps 21017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-psr 21022
This theorem is referenced by:  psrelbas  21058  psrplusg  21060  psraddcl  21062  psrmulr  21063  psrmulcllem  21066  psrsca  21068  psrvscafval  21069  psrvscacl  21072  psr0cl  21073  psrnegcl  21075  psr1cl  21081  resspsrbas  21094  resspsradd  21095  resspsrmul  21096  subrgpsr  21098  mvrf  21103  mplmon  21146  mplcoe1  21148  opsrtoslem2  21173  psr1bas  21272  psrbaspropd  21316  ply1plusgfvi  21323  fply1  31569  selvval2lem4  40154  evlsbagval  40198  mhpind  40206  mhphf  40208
  Copyright terms: Public domain W3C validator