MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbas Structured version   Visualization version   GIF version

Theorem psrbas 19846
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
psrbas.k 𝐾 = (Base‘𝑅)
psrbas.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbas.b 𝐵 = (Base‘𝑆)
psrbas.i (𝜑𝐼𝑉)
Assertion
Ref Expression
psrbas (𝜑𝐵 = (𝐾𝑚 𝐷))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrbas
Dummy variables 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrbas.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2795 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2795 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2795 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrbas.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 eqidd 2796 . . . . 5 ((𝜑𝑅 ∈ V) → (𝐾𝑚 𝐷) = (𝐾𝑚 𝐷))
8 eqid 2795 . . . . 5 ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷))) = ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))
9 eqid 2795 . . . . 5 (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥))))))) = (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))
10 eqid 2795 . . . . 5 (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔)) = (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))
11 eqidd 2796 . . . . 5 ((𝜑𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
12 psrbas.i . . . . . 6 (𝜑𝐼𝑉)
1312adantr 481 . . . . 5 ((𝜑𝑅 ∈ V) → 𝐼𝑉)
14 simpr 485 . . . . 5 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14psrval 19830 . . . 4 ((𝜑𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6542 . . 3 ((𝜑𝑅 ∈ V) → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
17 psrbas.b . . 3 𝐵 = (Base‘𝑆)
18 ovex 7048 . . . 4 (𝐾𝑚 𝐷) ∈ V
19 psrvalstr 19831 . . . . 5 ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
20 baseid 16372 . . . . 5 Base = Slot (Base‘ndx)
21 snsstp1 4656 . . . . . 6 {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩} ⊆ {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩}
22 ssun1 4069 . . . . . 6 {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2321, 22sstri 3898 . . . . 5 {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩} ⊆ ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2419, 20, 23strfv 16360 . . . 4 ((𝐾𝑚 𝐷) ∈ V → (𝐾𝑚 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2518, 24ax-mp 5 . . 3 (𝐾𝑚 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
2616, 17, 253eqtr4g 2856 . 2 ((𝜑𝑅 ∈ V) → 𝐵 = (𝐾𝑚 𝐷))
27 reldmpsr 19829 . . . . . . . 8 Rel dom mPwSer
2827ovprc2 7055 . . . . . . 7 𝑅 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
2928adantl 482 . . . . . 6 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
301, 29syl5eq 2843 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝑆 = ∅)
3130fveq2d 6542 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
32 base0 16365 . . . 4 ∅ = (Base‘∅)
3331, 17, 323eqtr4g 2856 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = ∅)
34 fvprc 6531 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
3534adantl 482 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑅) = ∅)
362, 35syl5eq 2843 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐾 = ∅)
376fczpsrbag 19835 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3812, 37syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3938adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑥𝐼 ↦ 0) ∈ 𝐷)
4039ne0d 4221 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐷 ≠ ∅)
412fvexi 6552 . . . . 5 𝐾 ∈ V
42 ovex 7048 . . . . . 6 (ℕ0𝑚 𝐼) ∈ V
436, 42rabex2 5128 . . . . 5 𝐷 ∈ V
4441, 43map0 8300 . . . 4 ((𝐾𝑚 𝐷) = ∅ ↔ (𝐾 = ∅ ∧ 𝐷 ≠ ∅))
4536, 40, 44sylanbrc 583 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐾𝑚 𝐷) = ∅)
4633, 45eqtr4d 2834 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = (𝐾𝑚 𝐷))
4726, 46pm2.61dan 809 1 (𝜑𝐵 = (𝐾𝑚 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wcel 2081  wne 2984  {crab 3109  Vcvv 3437  cun 3857  c0 4211  {csn 4472  {ctp 4476  cop 4478   class class class wbr 4962  cmpt 5041   × cxp 5441  ccnv 5442  cres 5445  cima 5446  cfv 6225  (class class class)co 7016  cmpo 7018  𝑓 cof 7265  𝑟 cofr 7266  𝑚 cmap 8256  Fincfn 8357  0cc0 10383  1c1 10384  cle 10522  cmin 10717  cn 11486  9c9 11547  0cn0 11745  ndxcnx 16309  Basecbs 16312  +gcplusg 16394  .rcmulr 16395  Scalarcsca 16397   ·𝑠 cvsca 16398  TopSetcts 16400  TopOpenctopn 16524  tcpt 16541   Σg cgsu 16543   mPwSer cmps 19819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-plusg 16407  df-mulr 16408  df-sca 16410  df-vsca 16411  df-tset 16413  df-psr 19824
This theorem is referenced by:  psrelbas  19847  psrplusg  19849  psraddcl  19851  psrmulr  19852  psrmulcllem  19855  psrsca  19857  psrvscafval  19858  psrvscacl  19861  psr0cl  19862  psrnegcl  19864  psr1cl  19870  resspsrbas  19883  resspsradd  19884  resspsrmul  19885  subrgpsr  19887  mvrf  19892  mplmon  19931  mplcoe1  19933  opsrtoslem2  19952  psr1bas  20042  psrbaspropd  20086  ply1plusgfvi  20093  fply1  30579  selvval2lem4  38665
  Copyright terms: Public domain W3C validator