MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbas Structured version   Visualization version   GIF version

Theorem psrbas 21970
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
psrbas.k 𝐾 = (Base‘𝑅)
psrbas.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbas.b 𝐵 = (Base‘𝑆)
psrbas.i (𝜑𝐼𝑉)
Assertion
Ref Expression
psrbas (𝜑𝐵 = (𝐾m 𝐷))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrbas
Dummy variables 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrbas.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2734 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2734 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2734 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrbas.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 eqidd 2735 . . . . 5 ((𝜑𝑅 ∈ V) → (𝐾m 𝐷) = (𝐾m 𝐷))
8 eqid 2734 . . . . 5 ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷))) = ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))
9 eqid 2734 . . . . 5 (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥))))))) = (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))
10 eqid 2734 . . . . 5 (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔)) = (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))
11 eqidd 2735 . . . . 5 ((𝜑𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
12 psrbas.i . . . . . 6 (𝜑𝐼𝑉)
1312adantr 480 . . . . 5 ((𝜑𝑅 ∈ V) → 𝐼𝑉)
14 simpr 484 . . . . 5 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14psrval 21952 . . . 4 ((𝜑𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6910 . . 3 ((𝜑𝑅 ∈ V) → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
17 psrbas.b . . 3 𝐵 = (Base‘𝑆)
18 ovex 7463 . . . 4 (𝐾m 𝐷) ∈ V
19 psrvalstr 21953 . . . . 5 ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
20 baseid 17247 . . . . 5 Base = Slot (Base‘ndx)
21 snsstp1 4820 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩}
22 ssun1 4187 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2321, 22sstri 4004 . . . . 5 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2419, 20, 23strfv 17237 . . . 4 ((𝐾m 𝐷) ∈ V → (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2518, 24ax-mp 5 . . 3 (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
2616, 17, 253eqtr4g 2799 . 2 ((𝜑𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
27 reldmpsr 21951 . . . . . . . 8 Rel dom mPwSer
2827ovprc2 7470 . . . . . . 7 𝑅 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
2928adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
301, 29eqtrid 2786 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝑆 = ∅)
3130fveq2d 6910 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
32 base0 17249 . . . 4 ∅ = (Base‘∅)
3331, 17, 323eqtr4g 2799 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = ∅)
34 fvprc 6898 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
3534adantl 481 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑅) = ∅)
362, 35eqtrid 2786 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐾 = ∅)
376fczpsrbag 21958 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3812, 37syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3938adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑥𝐼 ↦ 0) ∈ 𝐷)
4039ne0d 4347 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐷 ≠ ∅)
412fvexi 6920 . . . . 5 𝐾 ∈ V
42 ovex 7463 . . . . . 6 (ℕ0m 𝐼) ∈ V
436, 42rabex2 5346 . . . . 5 𝐷 ∈ V
4441, 43map0 8925 . . . 4 ((𝐾m 𝐷) = ∅ ↔ (𝐾 = ∅ ∧ 𝐷 ≠ ∅))
4536, 40, 44sylanbrc 583 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐾m 𝐷) = ∅)
4633, 45eqtr4d 2777 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
4726, 46pm2.61dan 813 1 (𝜑𝐵 = (𝐾m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  {crab 3432  Vcvv 3477  cun 3960  c0 4338  {csn 4630  {ctp 4634  cop 4636   class class class wbr 5147  cmpt 5230   × cxp 5686  ccnv 5687  cres 5690  cima 5691  cfv 6562  (class class class)co 7430  cmpo 7432  f cof 7694  r cofr 7695  m cmap 8864  Fincfn 8983  0cc0 11152  1c1 11153  cle 11293  cmin 11489  cn 12263  9c9 12325  0cn0 12523  ndxcnx 17226  Basecbs 17244  +gcplusg 17297  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  TopSetcts 17303  TopOpenctopn 17467  tcpt 17484   Σg cgsu 17486   mPwSer cmps 21941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17245  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-psr 21946
This theorem is referenced by:  psrelbas  21971  psrplusg  21973  psraddcl  21975  psraddclOLD  21976  psrmulr  21979  psrmulcllem  21982  psrsca  21984  psrvscafval  21985  psrvscacl  21988  psr0cl  21989  psrnegcl  21991  psrgrp  21993  psr1cl  21998  resspsrbas  22011  resspsradd  22012  resspsrmul  22013  subrgpsr  22015  mvrf  22022  mplmon  22070  mplcoe1  22072  opsrtoslem2  22097  psdcl  22182  psr1bas  22207  psrbaspropd  22251  ply1plusgfvi  22258  mhmcompl  22399  fply1  33563  psrmnd  42531  mhmcopsr  42535  evlsbagval  42552  mhpind  42580
  Copyright terms: Public domain W3C validator