Step | Hyp | Ref
| Expression |
1 | | psrbas.s |
. . . . 5
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | psrbas.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑅) |
3 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
4 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
5 | | eqid 2738 |
. . . . 5
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) |
6 | | psrbas.d |
. . . . 5
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
7 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ V) → (𝐾 ↑m 𝐷) = (𝐾 ↑m 𝐷)) |
8 | | eqid 2738 |
. . . . 5
⊢ (
∘f (+g‘𝑅) ↾ ((𝐾 ↑m 𝐷) × (𝐾 ↑m 𝐷))) = ( ∘f
(+g‘𝑅)
↾ ((𝐾
↑m 𝐷)
× (𝐾
↑m 𝐷))) |
9 | | eqid 2738 |
. . . . 5
⊢ (𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥))))))) = (𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥))))))) |
10 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f
(.r‘𝑅)𝑔)) = (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f
(.r‘𝑅)𝑔)) |
11 | | eqidd 2739 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ V) →
(∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)}))) |
12 | | psrbas.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
13 | 12 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝐼 ∈ 𝑉) |
14 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝑅 ∈ V) |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 14 | psrval 21118 |
. . . 4
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝑆 = ({〈(Base‘ndx), (𝐾 ↑m 𝐷)〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑅)
↾ ((𝐾
↑m 𝐷)
× (𝐾
↑m 𝐷)))〉, 〈(.r‘ndx),
(𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) |
16 | 15 | fveq2d 6778 |
. . 3
⊢ ((𝜑 ∧ 𝑅 ∈ V) → (Base‘𝑆) =
(Base‘({〈(Base‘ndx), (𝐾 ↑m 𝐷)〉, 〈(+g‘ndx), (
∘f (+g‘𝑅) ↾ ((𝐾 ↑m 𝐷) × (𝐾 ↑m 𝐷)))〉, 〈(.r‘ndx),
(𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) |
17 | | psrbas.b |
. . 3
⊢ 𝐵 = (Base‘𝑆) |
18 | | ovex 7308 |
. . . 4
⊢ (𝐾 ↑m 𝐷) ∈ V |
19 | | psrvalstr 21119 |
. . . . 5
⊢
({〈(Base‘ndx), (𝐾 ↑m 𝐷)〉, 〈(+g‘ndx), (
∘f (+g‘𝑅) ↾ ((𝐾 ↑m 𝐷) × (𝐾 ↑m 𝐷)))〉, 〈(.r‘ndx),
(𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) Struct 〈1,
9〉 |
20 | | baseid 16915 |
. . . . 5
⊢ Base =
Slot (Base‘ndx) |
21 | | snsstp1 4749 |
. . . . . 6
⊢
{〈(Base‘ndx), (𝐾 ↑m 𝐷)〉} ⊆ {〈(Base‘ndx),
(𝐾 ↑m 𝐷)〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑅)
↾ ((𝐾
↑m 𝐷)
× (𝐾
↑m 𝐷)))〉, 〈(.r‘ndx),
(𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥)))))))〉} |
22 | | ssun1 4106 |
. . . . . 6
⊢
{〈(Base‘ndx), (𝐾 ↑m 𝐷)〉, 〈(+g‘ndx), (
∘f (+g‘𝑅) ↾ ((𝐾 ↑m 𝐷) × (𝐾 ↑m 𝐷)))〉, 〈(.r‘ndx),
(𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥)))))))〉} ⊆
({〈(Base‘ndx), (𝐾 ↑m 𝐷)〉, 〈(+g‘ndx), (
∘f (+g‘𝑅) ↾ ((𝐾 ↑m 𝐷) × (𝐾 ↑m 𝐷)))〉, 〈(.r‘ndx),
(𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) |
23 | 21, 22 | sstri 3930 |
. . . . 5
⊢
{〈(Base‘ndx), (𝐾 ↑m 𝐷)〉} ⊆ ({〈(Base‘ndx),
(𝐾 ↑m 𝐷)〉,
〈(+g‘ndx), ( ∘f
(+g‘𝑅)
↾ ((𝐾
↑m 𝐷)
× (𝐾
↑m 𝐷)))〉, 〈(.r‘ndx),
(𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}) |
24 | 19, 20, 23 | strfv 16905 |
. . . 4
⊢ ((𝐾 ↑m 𝐷) ∈ V → (𝐾 ↑m 𝐷) =
(Base‘({〈(Base‘ndx), (𝐾 ↑m 𝐷)〉, 〈(+g‘ndx), (
∘f (+g‘𝑅) ↾ ((𝐾 ↑m 𝐷) × (𝐾 ↑m 𝐷)))〉, 〈(.r‘ndx),
(𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉}))) |
25 | 18, 24 | ax-mp 5 |
. . 3
⊢ (𝐾 ↑m 𝐷) =
(Base‘({〈(Base‘ndx), (𝐾 ↑m 𝐷)〉, 〈(+g‘ndx), (
∘f (+g‘𝑅) ↾ ((𝐾 ↑m 𝐷) × (𝐾 ↑m 𝐷)))〉, 〈(.r‘ndx),
(𝑔 ∈ (𝐾 ↑m 𝐷), ℎ ∈ (𝐾 ↑m 𝐷) ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑔‘𝑥)(.r‘𝑅)(ℎ‘(𝑘 ∘f − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ 𝐾, 𝑔 ∈ (𝐾 ↑m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f
(.r‘𝑅)𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝐷 × {(TopOpen‘𝑅)}))〉})) |
26 | 16, 17, 25 | 3eqtr4g 2803 |
. 2
⊢ ((𝜑 ∧ 𝑅 ∈ V) → 𝐵 = (𝐾 ↑m 𝐷)) |
27 | | reldmpsr 21117 |
. . . . . . . 8
⊢ Rel dom
mPwSer |
28 | 27 | ovprc2 7315 |
. . . . . . 7
⊢ (¬
𝑅 ∈ V → (𝐼 mPwSer 𝑅) = ∅) |
29 | 28 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
30 | 1, 29 | eqtrid 2790 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝑆 = ∅) |
31 | 30 | fveq2d 6778 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑆) =
(Base‘∅)) |
32 | | base0 16917 |
. . . 4
⊢ ∅ =
(Base‘∅) |
33 | 31, 17, 32 | 3eqtr4g 2803 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = ∅) |
34 | | fvprc 6766 |
. . . . . 6
⊢ (¬
𝑅 ∈ V →
(Base‘𝑅) =
∅) |
35 | 34 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑅) = ∅) |
36 | 2, 35 | eqtrid 2790 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐾 = ∅) |
37 | 6 | fczpsrbag 21126 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
38 | 12, 37 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
39 | 38 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑥 ∈ 𝐼 ↦ 0) ∈ 𝐷) |
40 | 39 | ne0d 4269 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐷 ≠ ∅) |
41 | 2 | fvexi 6788 |
. . . . 5
⊢ 𝐾 ∈ V |
42 | | ovex 7308 |
. . . . . 6
⊢
(ℕ0 ↑m 𝐼) ∈ V |
43 | 6, 42 | rabex2 5258 |
. . . . 5
⊢ 𝐷 ∈ V |
44 | 41, 43 | map0 8675 |
. . . 4
⊢ ((𝐾 ↑m 𝐷) = ∅ ↔ (𝐾 = ∅ ∧ 𝐷 ≠ ∅)) |
45 | 36, 40, 44 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐾 ↑m 𝐷) = ∅) |
46 | 33, 45 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = (𝐾 ↑m 𝐷)) |
47 | 26, 46 | pm2.61dan 810 |
1
⊢ (𝜑 → 𝐵 = (𝐾 ↑m 𝐷)) |