MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbas Structured version   Visualization version   GIF version

Theorem psrbas 20616
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
psrbas.k 𝐾 = (Base‘𝑅)
psrbas.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbas.b 𝐵 = (Base‘𝑆)
psrbas.i (𝜑𝐼𝑉)
Assertion
Ref Expression
psrbas (𝜑𝐵 = (𝐾m 𝐷))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrbas
Dummy variables 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrbas.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2798 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2798 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2798 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrbas.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 eqidd 2799 . . . . 5 ((𝜑𝑅 ∈ V) → (𝐾m 𝐷) = (𝐾m 𝐷))
8 eqid 2798 . . . . 5 ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷))) = ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))
9 eqid 2798 . . . . 5 (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥))))))) = (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))
10 eqid 2798 . . . . 5 (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔)) = (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))
11 eqidd 2799 . . . . 5 ((𝜑𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
12 psrbas.i . . . . . 6 (𝜑𝐼𝑉)
1312adantr 484 . . . . 5 ((𝜑𝑅 ∈ V) → 𝐼𝑉)
14 simpr 488 . . . . 5 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14psrval 20600 . . . 4 ((𝜑𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6649 . . 3 ((𝜑𝑅 ∈ V) → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
17 psrbas.b . . 3 𝐵 = (Base‘𝑆)
18 ovex 7168 . . . 4 (𝐾m 𝐷) ∈ V
19 psrvalstr 20601 . . . . 5 ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
20 baseid 16535 . . . . 5 Base = Slot (Base‘ndx)
21 snsstp1 4709 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩}
22 ssun1 4099 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2321, 22sstri 3924 . . . . 5 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2419, 20, 23strfv 16523 . . . 4 ((𝐾m 𝐷) ∈ V → (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2518, 24ax-mp 5 . . 3 (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
2616, 17, 253eqtr4g 2858 . 2 ((𝜑𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
27 reldmpsr 20599 . . . . . . . 8 Rel dom mPwSer
2827ovprc2 7175 . . . . . . 7 𝑅 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
2928adantl 485 . . . . . 6 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
301, 29syl5eq 2845 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝑆 = ∅)
3130fveq2d 6649 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
32 base0 16528 . . . 4 ∅ = (Base‘∅)
3331, 17, 323eqtr4g 2858 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = ∅)
34 fvprc 6638 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
3534adantl 485 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑅) = ∅)
362, 35syl5eq 2845 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐾 = ∅)
376fczpsrbag 20605 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3812, 37syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3938adantr 484 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑥𝐼 ↦ 0) ∈ 𝐷)
4039ne0d 4251 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐷 ≠ ∅)
412fvexi 6659 . . . . 5 𝐾 ∈ V
42 ovex 7168 . . . . . 6 (ℕ0m 𝐼) ∈ V
436, 42rabex2 5201 . . . . 5 𝐷 ∈ V
4441, 43map0 8434 . . . 4 ((𝐾m 𝐷) = ∅ ↔ (𝐾 = ∅ ∧ 𝐷 ≠ ∅))
4536, 40, 44sylanbrc 586 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐾m 𝐷) = ∅)
4633, 45eqtr4d 2836 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
4726, 46pm2.61dan 812 1 (𝜑𝐵 = (𝐾m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  {crab 3110  Vcvv 3441  cun 3879  c0 4243  {csn 4525  {ctp 4529  cop 4531   class class class wbr 5030  cmpt 5110   × cxp 5517  ccnv 5518  cres 5521  cima 5522  cfv 6324  (class class class)co 7135  cmpo 7137  f cof 7387  r cofr 7388  m cmap 8389  Fincfn 8492  0cc0 10526  1c1 10527  cle 10665  cmin 10859  cn 11625  9c9 11687  0cn0 11885  ndxcnx 16472  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  TopSetcts 16563  TopOpenctopn 16687  tcpt 16704   Σg cgsu 16706   mPwSer cmps 20589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-tset 16576  df-psr 20594
This theorem is referenced by:  psrelbas  20617  psrplusg  20619  psraddcl  20621  psrmulr  20622  psrmulcllem  20625  psrsca  20627  psrvscafval  20628  psrvscacl  20631  psr0cl  20632  psrnegcl  20634  psr1cl  20640  resspsrbas  20653  resspsradd  20654  resspsrmul  20655  subrgpsr  20657  mvrf  20662  mplmon  20703  mplcoe1  20705  opsrtoslem2  20724  psr1bas  20820  psrbaspropd  20864  ply1plusgfvi  20871  fply1  30982  selvval2lem4  39429
  Copyright terms: Public domain W3C validator