MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbas Structured version   Visualization version   GIF version

Theorem psrbas 21147
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
psrbas.k 𝐾 = (Base‘𝑅)
psrbas.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbas.b 𝐵 = (Base‘𝑆)
psrbas.i (𝜑𝐼𝑉)
Assertion
Ref Expression
psrbas (𝜑𝐵 = (𝐾m 𝐷))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrbas
Dummy variables 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrbas.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2738 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2738 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2738 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrbas.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 eqidd 2739 . . . . 5 ((𝜑𝑅 ∈ V) → (𝐾m 𝐷) = (𝐾m 𝐷))
8 eqid 2738 . . . . 5 ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷))) = ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))
9 eqid 2738 . . . . 5 (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥))))))) = (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))
10 eqid 2738 . . . . 5 (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔)) = (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))
11 eqidd 2739 . . . . 5 ((𝜑𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
12 psrbas.i . . . . . 6 (𝜑𝐼𝑉)
1312adantr 481 . . . . 5 ((𝜑𝑅 ∈ V) → 𝐼𝑉)
14 simpr 485 . . . . 5 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14psrval 21118 . . . 4 ((𝜑𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6778 . . 3 ((𝜑𝑅 ∈ V) → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
17 psrbas.b . . 3 𝐵 = (Base‘𝑆)
18 ovex 7308 . . . 4 (𝐾m 𝐷) ∈ V
19 psrvalstr 21119 . . . . 5 ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
20 baseid 16915 . . . . 5 Base = Slot (Base‘ndx)
21 snsstp1 4749 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩}
22 ssun1 4106 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2321, 22sstri 3930 . . . . 5 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2419, 20, 23strfv 16905 . . . 4 ((𝐾m 𝐷) ∈ V → (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2518, 24ax-mp 5 . . 3 (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
2616, 17, 253eqtr4g 2803 . 2 ((𝜑𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
27 reldmpsr 21117 . . . . . . . 8 Rel dom mPwSer
2827ovprc2 7315 . . . . . . 7 𝑅 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
2928adantl 482 . . . . . 6 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
301, 29eqtrid 2790 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝑆 = ∅)
3130fveq2d 6778 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
32 base0 16917 . . . 4 ∅ = (Base‘∅)
3331, 17, 323eqtr4g 2803 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = ∅)
34 fvprc 6766 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
3534adantl 482 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑅) = ∅)
362, 35eqtrid 2790 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐾 = ∅)
376fczpsrbag 21126 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3812, 37syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3938adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑥𝐼 ↦ 0) ∈ 𝐷)
4039ne0d 4269 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐷 ≠ ∅)
412fvexi 6788 . . . . 5 𝐾 ∈ V
42 ovex 7308 . . . . . 6 (ℕ0m 𝐼) ∈ V
436, 42rabex2 5258 . . . . 5 𝐷 ∈ V
4441, 43map0 8675 . . . 4 ((𝐾m 𝐷) = ∅ ↔ (𝐾 = ∅ ∧ 𝐷 ≠ ∅))
4536, 40, 44sylanbrc 583 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐾m 𝐷) = ∅)
4633, 45eqtr4d 2781 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
4726, 46pm2.61dan 810 1 (𝜑𝐵 = (𝐾m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  {crab 3068  Vcvv 3432  cun 3885  c0 4256  {csn 4561  {ctp 4565  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  ccnv 5588  cres 5591  cima 5592  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  r cofr 7532  m cmap 8615  Fincfn 8733  0cc0 10871  1c1 10872  cle 11010  cmin 11205  cn 11973  9c9 12035  0cn0 12233  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  TopSetcts 16968  TopOpenctopn 17132  tcpt 17149   Σg cgsu 17151   mPwSer cmps 21107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-psr 21112
This theorem is referenced by:  psrelbas  21148  psrplusg  21150  psraddcl  21152  psrmulr  21153  psrmulcllem  21156  psrsca  21158  psrvscafval  21159  psrvscacl  21162  psr0cl  21163  psrnegcl  21165  psr1cl  21171  resspsrbas  21184  resspsradd  21185  resspsrmul  21186  subrgpsr  21188  mvrf  21193  mplmon  21236  mplcoe1  21238  opsrtoslem2  21263  psr1bas  21362  psrbaspropd  21406  ply1plusgfvi  21413  fply1  31667  selvval2lem4  40228  evlsbagval  40275  mhpind  40283  mhphf  40285
  Copyright terms: Public domain W3C validator