MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbas Structured version   Visualization version   GIF version

Theorem psrbas 21842
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
psrbas.k 𝐾 = (Base‘𝑅)
psrbas.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbas.b 𝐵 = (Base‘𝑆)
psrbas.i (𝜑𝐼𝑉)
Assertion
Ref Expression
psrbas (𝜑𝐵 = (𝐾m 𝐷))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrbas
Dummy variables 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrbas.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2729 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2729 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrbas.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 eqidd 2730 . . . . 5 ((𝜑𝑅 ∈ V) → (𝐾m 𝐷) = (𝐾m 𝐷))
8 eqid 2729 . . . . 5 ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷))) = ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))
9 eqid 2729 . . . . 5 (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥))))))) = (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))
10 eqid 2729 . . . . 5 (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔)) = (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))
11 eqidd 2730 . . . . 5 ((𝜑𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
12 psrbas.i . . . . . 6 (𝜑𝐼𝑉)
1312adantr 480 . . . . 5 ((𝜑𝑅 ∈ V) → 𝐼𝑉)
14 simpr 484 . . . . 5 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14psrval 21824 . . . 4 ((𝜑𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6862 . . 3 ((𝜑𝑅 ∈ V) → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
17 psrbas.b . . 3 𝐵 = (Base‘𝑆)
18 ovex 7420 . . . 4 (𝐾m 𝐷) ∈ V
19 psrvalstr 21825 . . . . 5 ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
20 baseid 17182 . . . . 5 Base = Slot (Base‘ndx)
21 snsstp1 4780 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩}
22 ssun1 4141 . . . . . 6 {⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2321, 22sstri 3956 . . . . 5 {⟨(Base‘ndx), (𝐾m 𝐷)⟩} ⊆ ({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2419, 20, 23strfv 17173 . . . 4 ((𝐾m 𝐷) ∈ V → (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2518, 24ax-mp 5 . . 3 (𝐾m 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾m 𝐷)⟩, ⟨(+g‘ndx), ( ∘f (+g𝑅) ↾ ((𝐾m 𝐷) × (𝐾m 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾m 𝐷), ∈ (𝐾m 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾m 𝐷) ↦ ((𝐷 × {𝑥}) ∘f (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
2616, 17, 253eqtr4g 2789 . 2 ((𝜑𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
27 reldmpsr 21823 . . . . . . . 8 Rel dom mPwSer
2827ovprc2 7427 . . . . . . 7 𝑅 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
2928adantl 481 . . . . . 6 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
301, 29eqtrid 2776 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝑆 = ∅)
3130fveq2d 6862 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
32 base0 17184 . . . 4 ∅ = (Base‘∅)
3331, 17, 323eqtr4g 2789 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = ∅)
34 fvprc 6850 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
3534adantl 481 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑅) = ∅)
362, 35eqtrid 2776 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐾 = ∅)
376fczpsrbag 21830 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3812, 37syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3938adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑥𝐼 ↦ 0) ∈ 𝐷)
4039ne0d 4305 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐷 ≠ ∅)
412fvexi 6872 . . . . 5 𝐾 ∈ V
42 ovex 7420 . . . . . 6 (ℕ0m 𝐼) ∈ V
436, 42rabex2 5296 . . . . 5 𝐷 ∈ V
4441, 43map0 8860 . . . 4 ((𝐾m 𝐷) = ∅ ↔ (𝐾 = ∅ ∧ 𝐷 ≠ ∅))
4536, 40, 44sylanbrc 583 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐾m 𝐷) = ∅)
4633, 45eqtr4d 2767 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = (𝐾m 𝐷))
4726, 46pm2.61dan 812 1 (𝜑𝐵 = (𝐾m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3405  Vcvv 3447  cun 3912  c0 4296  {csn 4589  {ctp 4593  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  cres 5640  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389  f cof 7651  r cofr 7652  m cmap 8799  Fincfn 8918  0cc0 11068  1c1 11069  cle 11209  cmin 11405  cn 12186  9c9 12248  0cn0 12442  ndxcnx 17163  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  TopSetcts 17226  TopOpenctopn 17384  tcpt 17401   Σg cgsu 17403   mPwSer cmps 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-psr 21818
This theorem is referenced by:  psrelbas  21843  psrplusg  21845  psraddcl  21847  psraddclOLD  21848  psrmulr  21851  psrmulcllem  21854  psrsca  21856  psrvscafval  21857  psrvscacl  21860  psr0cl  21861  psrnegcl  21863  psrgrp  21865  psr1cl  21870  resspsrbas  21883  resspsradd  21884  resspsrmul  21885  subrgpsr  21887  mvrf  21894  mplmon  21942  mplcoe1  21944  opsrtoslem2  21963  psdcl  22048  psr1bas  22075  psrbaspropd  22119  ply1plusgfvi  22126  mhmcompl  22267  fply1  33527  psrmnd  42533  mhmcopsr  42537  evlsbagval  42554  mhpind  42582
  Copyright terms: Public domain W3C validator