MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrsca Structured version   Visualization version   GIF version

Theorem psrsca 21921
Description: The scalar field of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrsca.i (𝜑𝐼𝑉)
psrsca.r (𝜑𝑅𝑊)
Assertion
Ref Expression
psrsca (𝜑𝑅 = (Scalar‘𝑆))

Proof of Theorem psrsca
Dummy variables 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrsca.r . . 3 (𝜑𝑅𝑊)
2 psrvalstr 21890 . . . 4 ({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
3 scaid 17331 . . . 4 Scalar = Slot (Scalar‘ndx)
4 snsstp1 4796 . . . . 5 {⟨(Scalar‘ndx), 𝑅⟩} ⊆ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}
5 ssun2 4159 . . . . 5 {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩} ⊆ ({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
64, 5sstri 3973 . . . 4 {⟨(Scalar‘ndx), 𝑅⟩} ⊆ ({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
72, 3, 6strfv 17222 . . 3 (𝑅𝑊𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
81, 7syl 17 . 2 (𝜑𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
9 psrsca.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
10 eqid 2734 . . . 4 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2734 . . . 4 (+g𝑅) = (+g𝑅)
12 eqid 2734 . . . 4 (.r𝑅) = (.r𝑅)
13 eqid 2734 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
14 eqid 2734 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
15 eqid 2734 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
16 psrsca.i . . . . 5 (𝜑𝐼𝑉)
179, 10, 14, 15, 16psrbas 21907 . . . 4 (𝜑 → (Base‘𝑆) = ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
18 eqid 2734 . . . . 5 (+g𝑆) = (+g𝑆)
199, 15, 11, 18psrplusg 21910 . . . 4 (+g𝑆) = ( ∘f (+g𝑅) ↾ ((Base‘𝑆) × (Base‘𝑆)))
20 eqid 2734 . . . . 5 (.r𝑆) = (.r𝑆)
219, 15, 12, 20, 14psrmulr 21916 . . . 4 (.r𝑆) = (𝑓 ∈ (Base‘𝑆), 𝑧 ∈ (Base‘𝑆) ↦ (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑤} ↦ ((𝑓𝑥)(.r𝑅)(𝑧‘(𝑤f𝑥)))))))
22 eqid 2734 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))
23 eqidd 2735 . . . 4 (𝜑 → (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) = (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})))
249, 10, 11, 12, 13, 14, 17, 19, 21, 22, 23, 16, 1psrval 21889 . . 3 (𝜑𝑆 = ({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
2524fveq2d 6890 . 2 (𝜑 → (Scalar‘𝑆) = (Scalar‘({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
268, 25eqtr4d 2772 1 (𝜑𝑅 = (Scalar‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3419  cun 3929  {csn 4606  {ctp 4610  cop 4612   × cxp 5663  ccnv 5664  cima 5668  cfv 6541  (class class class)co 7413  cmpo 7415  f cof 7677  m cmap 8848  Fincfn 8967  1c1 11138  cn 12248  9c9 12310  0cn0 12509  ndxcnx 17212  Basecbs 17229  +gcplusg 17273  .rcmulr 17274  Scalarcsca 17276   ·𝑠 cvsca 17277  TopSetcts 17279  TopOpenctopn 17437  tcpt 17454   mPwSer cmps 21878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-uz 12861  df-fz 13530  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-tset 17292  df-psr 21883
This theorem is referenced by:  psrlmod  21934  psrassa  21947  psrascl  21953  psrasclcl  21954  mpllsslem  21974  mplsca  21987  opsrsca  22026  opsrassa  22032  psdascl  22120  ply1lss  22146  opsrlmod  22195
  Copyright terms: Public domain W3C validator