MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrsca Structured version   Visualization version   GIF version

Theorem psrsca 21158
Description: The scalar field of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrsca.i (𝜑𝐼𝑉)
psrsca.r (𝜑𝑅𝑊)
Assertion
Ref Expression
psrsca (𝜑𝑅 = (Scalar‘𝑆))

Proof of Theorem psrsca
Dummy variables 𝑓 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrsca.r . . 3 (𝜑𝑅𝑊)
2 psrvalstr 21119 . . . 4 ({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
3 scaid 17025 . . . 4 Scalar = Slot (Scalar‘ndx)
4 snsstp1 4749 . . . . 5 {⟨(Scalar‘ndx), 𝑅⟩} ⊆ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}
5 ssun2 4107 . . . . 5 {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩} ⊆ ({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
64, 5sstri 3930 . . . 4 {⟨(Scalar‘ndx), 𝑅⟩} ⊆ ({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})
72, 3, 6strfv 16905 . . 3 (𝑅𝑊𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
81, 7syl 17 . 2 (𝜑𝑅 = (Scalar‘({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
9 psrsca.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
10 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2738 . . . 4 (+g𝑅) = (+g𝑅)
12 eqid 2738 . . . 4 (.r𝑅) = (.r𝑅)
13 eqid 2738 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
14 eqid 2738 . . . 4 { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
15 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
16 psrsca.i . . . . 5 (𝜑𝐼𝑉)
179, 10, 14, 15, 16psrbas 21147 . . . 4 (𝜑 → (Base‘𝑆) = ((Base‘𝑅) ↑m { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}))
18 eqid 2738 . . . . 5 (+g𝑆) = (+g𝑆)
199, 15, 11, 18psrplusg 21150 . . . 4 (+g𝑆) = ( ∘f (+g𝑅) ↾ ((Base‘𝑆) × (Base‘𝑆)))
20 eqid 2738 . . . . 5 (.r𝑆) = (.r𝑆)
219, 15, 12, 20, 14psrmulr 21153 . . . 4 (.r𝑆) = (𝑓 ∈ (Base‘𝑆), 𝑧 ∈ (Base‘𝑆) ↦ (𝑤 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} ∣ 𝑦r𝑤} ↦ ((𝑓𝑥)(.r𝑅)(𝑧‘(𝑤f𝑥)))))))
22 eqid 2738 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))
23 eqidd 2739 . . . 4 (𝜑 → (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})) = (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)})))
249, 10, 11, 12, 13, 14, 17, 19, 21, 22, 23, 16, 1psrval 21118 . . 3 (𝜑𝑆 = ({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩}))
2524fveq2d 6778 . 2 (𝜑 → (Scalar‘𝑆) = (Scalar‘({⟨(Base‘ndx), (Base‘𝑆)⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {𝑥}) ∘f (.r𝑅)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘({ ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} × {(TopOpen‘𝑅)}))⟩})))
268, 25eqtr4d 2781 1 (𝜑𝑅 = (Scalar‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  cun 3885  {csn 4561  {ctp 4565  cop 4567   × cxp 5587  ccnv 5588  cima 5592  cfv 6433  (class class class)co 7275  cmpo 7277  f cof 7531  m cmap 8615  Fincfn 8733  1c1 10872  cn 11973  9c9 12035  0cn0 12233  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  TopSetcts 16968  TopOpenctopn 17132  tcpt 17149   mPwSer cmps 21107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-psr 21112
This theorem is referenced by:  psrlmod  21170  psrassa  21183  mpllsslem  21206  mplsca  21217  opsrsca  21260  opsrscaOLD  21261  opsrassa  21267  ply1lss  21367  opsrlmod  21417
  Copyright terms: Public domain W3C validator