Step | Hyp | Ref
| Expression |
1 | | psrsca.r |
. . 3
β’ (π β π
β π) |
2 | | psrvalstr 21460 |
. . . 4
β’
({β¨(Baseβndx), (Baseβπ)β©, β¨(+gβndx),
(+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
π
β©, β¨(
Β·π βndx), (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π))β©, β¨(TopSetβndx),
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))β©}) Struct β¨1,
9β© |
3 | | scaid 17256 |
. . . 4
β’ Scalar =
Slot (Scalarβndx) |
4 | | snsstp1 4818 |
. . . . 5
β’
{β¨(Scalarβndx), π
β©} β {β¨(Scalarβndx),
π
β©, β¨(
Β·π βndx), (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π))β©, β¨(TopSetβndx),
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))β©} |
5 | | ssun2 4172 |
. . . . 5
β’
{β¨(Scalarβndx), π
β©, β¨(
Β·π βndx), (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π))β©, β¨(TopSetβndx),
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))β©} β
({β¨(Baseβndx), (Baseβπ)β©, β¨(+gβndx),
(+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
π
β©, β¨(
Β·π βndx), (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π))β©, β¨(TopSetβndx),
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))β©}) |
6 | 4, 5 | sstri 3990 |
. . . 4
β’
{β¨(Scalarβndx), π
β©} β ({β¨(Baseβndx),
(Baseβπ)β©,
β¨(+gβndx), (+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
π
β©, β¨(
Β·π βndx), (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π))β©, β¨(TopSetβndx),
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))β©}) |
7 | 2, 3, 6 | strfv 17133 |
. . 3
β’ (π
β π β π
= (Scalarβ({β¨(Baseβndx),
(Baseβπ)β©,
β¨(+gβndx), (+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
π
β©, β¨(
Β·π βndx), (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π))β©, β¨(TopSetβndx),
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))β©}))) |
8 | 1, 7 | syl 17 |
. 2
β’ (π β π
= (Scalarβ({β¨(Baseβndx),
(Baseβπ)β©,
β¨(+gβndx), (+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
π
β©, β¨(
Β·π βndx), (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π))β©, β¨(TopSetβndx),
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))β©}))) |
9 | | psrsca.s |
. . . 4
β’ π = (πΌ mPwSer π
) |
10 | | eqid 2732 |
. . . 4
β’
(Baseβπ
) =
(Baseβπ
) |
11 | | eqid 2732 |
. . . 4
β’
(+gβπ
) = (+gβπ
) |
12 | | eqid 2732 |
. . . 4
β’
(.rβπ
) = (.rβπ
) |
13 | | eqid 2732 |
. . . 4
β’
(TopOpenβπ
) =
(TopOpenβπ
) |
14 | | eqid 2732 |
. . . 4
β’ {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} = {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} |
15 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
16 | | psrsca.i |
. . . . 5
β’ (π β πΌ β π) |
17 | 9, 10, 14, 15, 16 | psrbas 21488 |
. . . 4
β’ (π β (Baseβπ) = ((Baseβπ
) βm {β β (β0
βm πΌ)
β£ (β‘β β β) β
Fin})) |
18 | | eqid 2732 |
. . . . 5
β’
(+gβπ) = (+gβπ) |
19 | 9, 15, 11, 18 | psrplusg 21491 |
. . . 4
β’
(+gβπ) = ( βf
(+gβπ
)
βΎ ((Baseβπ)
Γ (Baseβπ))) |
20 | | eqid 2732 |
. . . . 5
β’
(.rβπ) = (.rβπ) |
21 | 9, 15, 12, 20, 14 | psrmulr 21494 |
. . . 4
β’
(.rβπ) = (π β (Baseβπ), π§ β (Baseβπ) β¦ (π€ β {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β¦ (π
Ξ£g
(π₯ β {π¦ β {β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} β£ π¦ βr β€ π€} β¦ ((πβπ₯)(.rβπ
)(π§β(π€ βf β π₯))))))) |
22 | | eqid 2732 |
. . . 4
β’ (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π)) = (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π)) |
23 | | eqidd 2733 |
. . . 4
β’ (π β
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)})) =
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))) |
24 | 9, 10, 11, 12, 13, 14, 17, 19, 21, 22, 23, 16, 1 | psrval 21459 |
. . 3
β’ (π β π = ({β¨(Baseβndx),
(Baseβπ)β©,
β¨(+gβndx), (+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
π
β©, β¨(
Β·π βndx), (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π))β©, β¨(TopSetβndx),
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))β©})) |
25 | 24 | fveq2d 6892 |
. 2
β’ (π β (Scalarβπ) =
(Scalarβ({β¨(Baseβndx), (Baseβπ)β©, β¨(+gβndx),
(+gβπ)β©, β¨(.rβndx),
(.rβπ)β©} βͺ {β¨(Scalarβndx),
π
β©, β¨(
Β·π βndx), (π₯ β (Baseβπ
), π β (Baseβπ) β¦ (({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ {π₯}) βf
(.rβπ
)π))β©, β¨(TopSetβndx),
(βtβ({β β (β0
βm πΌ)
β£ (β‘β β β) β Fin} Γ
{(TopOpenβπ
)}))β©}))) |
26 | 8, 25 | eqtr4d 2775 |
1
β’ (π β π
= (Scalarβπ)) |