Step | Hyp | Ref
| Expression |
1 | | psrsca.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
2 | | psrvalstr 21119 |
. . . 4
⊢
({〈(Base‘ndx), (Base‘𝑆)〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(.r‘𝑆)〉} ∪ {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) Struct 〈1,
9〉 |
3 | | scaid 17025 |
. . . 4
⊢ Scalar =
Slot (Scalar‘ndx) |
4 | | snsstp1 4749 |
. . . . 5
⊢
{〈(Scalar‘ndx), 𝑅〉} ⊆ {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉} |
5 | | ssun2 4107 |
. . . . 5
⊢
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉} ⊆
({〈(Base‘ndx), (Base‘𝑆)〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(.r‘𝑆)〉} ∪ {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) |
6 | 4, 5 | sstri 3930 |
. . . 4
⊢
{〈(Scalar‘ndx), 𝑅〉} ⊆ ({〈(Base‘ndx),
(Base‘𝑆)〉,
〈(+g‘ndx), (+g‘𝑆)〉, 〈(.r‘ndx),
(.r‘𝑆)〉} ∪ {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}) |
7 | 2, 3, 6 | strfv 16905 |
. . 3
⊢ (𝑅 ∈ 𝑊 → 𝑅 = (Scalar‘({〈(Base‘ndx),
(Base‘𝑆)〉,
〈(+g‘ndx), (+g‘𝑆)〉, 〈(.r‘ndx),
(.r‘𝑆)〉} ∪ {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}))) |
8 | 1, 7 | syl 17 |
. 2
⊢ (𝜑 → 𝑅 = (Scalar‘({〈(Base‘ndx),
(Base‘𝑆)〉,
〈(+g‘ndx), (+g‘𝑆)〉, 〈(.r‘ndx),
(.r‘𝑆)〉} ∪ {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}))) |
9 | | psrsca.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
10 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
11 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) |
12 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
13 | | eqid 2738 |
. . . 4
⊢
(TopOpen‘𝑅) =
(TopOpen‘𝑅) |
14 | | eqid 2738 |
. . . 4
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
15 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
16 | | psrsca.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
17 | 9, 10, 14, 15, 16 | psrbas 21147 |
. . . 4
⊢ (𝜑 → (Base‘𝑆) = ((Base‘𝑅) ↑m {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈
Fin})) |
18 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑆) = (+g‘𝑆) |
19 | 9, 15, 11, 18 | psrplusg 21150 |
. . . 4
⊢
(+g‘𝑆) = ( ∘f
(+g‘𝑅)
↾ ((Base‘𝑆)
× (Base‘𝑆))) |
20 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑆) = (.r‘𝑆) |
21 | 9, 15, 12, 20, 14 | psrmulr 21153 |
. . . 4
⊢
(.r‘𝑆) = (𝑓 ∈ (Base‘𝑆), 𝑧 ∈ (Base‘𝑆) ↦ (𝑤 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (𝑅 Σg
(𝑥 ∈ {𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣ 𝑦 ∘r ≤ 𝑤} ↦ ((𝑓‘𝑥)(.r‘𝑅)(𝑧‘(𝑤 ∘f − 𝑥))))))) |
22 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓)) = (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓)) |
23 | | eqidd 2739 |
. . . 4
⊢ (𝜑 →
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)})) =
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))) |
24 | 9, 10, 11, 12, 13, 14, 17, 19, 21, 22, 23, 16, 1 | psrval 21118 |
. . 3
⊢ (𝜑 → 𝑆 = ({〈(Base‘ndx),
(Base‘𝑆)〉,
〈(+g‘ndx), (+g‘𝑆)〉, 〈(.r‘ndx),
(.r‘𝑆)〉} ∪ {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉})) |
25 | 24 | fveq2d 6778 |
. 2
⊢ (𝜑 → (Scalar‘𝑆) =
(Scalar‘({〈(Base‘ndx), (Base‘𝑆)〉, 〈(+g‘ndx),
(+g‘𝑆)〉, 〈(.r‘ndx),
(.r‘𝑆)〉} ∪ {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑓 ∈ (Base‘𝑆) ↦ (({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} × {𝑥}) ∘f
(.r‘𝑅)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘({ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} ×
{(TopOpen‘𝑅)}))〉}))) |
26 | 8, 25 | eqtr4d 2781 |
1
⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |