MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imastset Structured version   Visualization version   GIF version

Theorem imastset 16789
Description: The topology of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imastset.j 𝐽 = (TopOpen‘𝑅)
imastset.o 𝑂 = (TopSet‘𝑈)
Assertion
Ref Expression
imastset (𝜑𝑂 = (𝐽 qTop 𝐹))

Proof of Theorem imastset
Dummy variables 𝑝 𝑞 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
2 imasbas.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2821 . . . 4 (+g𝑅) = (+g𝑅)
4 eqid 2821 . . . 4 (.r𝑅) = (.r𝑅)
5 eqid 2821 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
6 eqid 2821 . . . 4 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 eqid 2821 . . . 4 ( ·𝑠𝑅) = ( ·𝑠𝑅)
8 eqid 2821 . . . 4 (·𝑖𝑅) = (·𝑖𝑅)
9 imastset.j . . . 4 𝐽 = (TopOpen‘𝑅)
10 eqid 2821 . . . 4 (dist‘𝑅) = (dist‘𝑅)
11 eqid 2821 . . . 4 (le‘𝑅) = (le‘𝑅)
12 imasbas.f . . . . 5 (𝜑𝐹:𝑉onto𝐵)
13 imasbas.r . . . . 5 (𝜑𝑅𝑍)
14 eqid 2821 . . . . 5 (+g𝑈) = (+g𝑈)
151, 2, 12, 13, 3, 14imasplusg 16784 . . . 4 (𝜑 → (+g𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
16 eqid 2821 . . . . 5 (.r𝑈) = (.r𝑈)
171, 2, 12, 13, 4, 16imasmulr 16785 . . . 4 (𝜑 → (.r𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
18 eqid 2821 . . . . 5 ( ·𝑠𝑈) = ( ·𝑠𝑈)
191, 2, 12, 13, 5, 6, 7, 18imasvsca 16787 . . . 4 (𝜑 → ( ·𝑠𝑈) = 𝑞𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑅)), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))))
20 eqidd 2822 . . . 4 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩})
21 eqidd 2822 . . . 4 (𝜑 → (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹))
22 eqid 2821 . . . . 5 (dist‘𝑈) = (dist‘𝑈)
231, 2, 12, 13, 10, 22imasds 16780 . . . 4 (𝜑 → (dist‘𝑈) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑢 ∈ ℕ ran (𝑧 ∈ {𝑤 ∈ ((𝑉 × 𝑉) ↑m (1...𝑢)) ∣ ((𝐹‘(1st ‘(𝑤‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑤𝑢))) = 𝑦 ∧ ∀𝑣 ∈ (1...(𝑢 − 1))(𝐹‘(2nd ‘(𝑤𝑣))) = (𝐹‘(1st ‘(𝑤‘(𝑣 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑅) ∘ 𝑧))), ℝ*, < )))
24 eqidd 2822 . . . 4 (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) = ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 19, 20, 21, 23, 24, 12, 13imasval 16778 . . 3 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
2625fveq2d 6668 . 2 (𝜑 → (TopSet‘𝑈) = (TopSet‘(({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})))
27 imastset.o . 2 𝑂 = (TopSet‘𝑈)
28 ovex 7183 . . 3 (𝐽 qTop 𝐹) ∈ V
29 eqid 2821 . . . . 5 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3029imasvalstr 16719 . . . 4 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) Struct ⟨1, 12⟩
31 tsetid 16654 . . . 4 TopSet = Slot (TopSet‘ndx)
32 snsstp1 4742 . . . . 5 {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩} ⊆ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}
33 ssun2 4148 . . . . 5 {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3432, 33sstri 3975 . . . 4 {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
3530, 31, 34strfv 16525 . . 3 ((𝐽 qTop 𝐹) ∈ V → (𝐽 qTop 𝐹) = (TopSet‘(({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})))
3628, 35ax-mp 5 . 2 (𝐽 qTop 𝐹) = (TopSet‘(({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), ( ·𝑠𝑈)⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), (𝐽 qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
3726, 27, 363eqtr4g 2881 1 (𝜑𝑂 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  Vcvv 3494  cun 3933  {csn 4560  {ctp 4564  cop 4566   ciun 4911  ccnv 5548  ccom 5553  ontowfo 6347  cfv 6349  (class class class)co 7150  1c1 10532  2c2 11686  cdc 12092  ndxcnx 16474  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  ·𝑖cip 16564  TopSetcts 16565  lecple 16566  distcds 16568  TopOpenctopn 16689   qTop cqtop 16770  s cimas 16771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-imas 16775
This theorem is referenced by:  imasle  16790  imastopn  22322  circtopn  31096
  Copyright terms: Public domain W3C validator