MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imastset Structured version   Visualization version   GIF version

Theorem imastset 17464
Description: The topology of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasbas.u (πœ‘ β†’ π‘ˆ = (𝐹 β€œs 𝑅))
imasbas.v (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘…))
imasbas.f (πœ‘ β†’ 𝐹:𝑉–onto→𝐡)
imasbas.r (πœ‘ β†’ 𝑅 ∈ 𝑍)
imastset.j 𝐽 = (TopOpenβ€˜π‘…)
imastset.o 𝑂 = (TopSetβ€˜π‘ˆ)
Assertion
Ref Expression
imastset (πœ‘ β†’ 𝑂 = (𝐽 qTop 𝐹))

Proof of Theorem imastset
Dummy variables 𝑝 π‘ž 𝑒 𝑣 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . . 4 (πœ‘ β†’ π‘ˆ = (𝐹 β€œs 𝑅))
2 imasbas.v . . . 4 (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘…))
3 eqid 2724 . . . 4 (+gβ€˜π‘…) = (+gβ€˜π‘…)
4 eqid 2724 . . . 4 (.rβ€˜π‘…) = (.rβ€˜π‘…)
5 eqid 2724 . . . 4 (Scalarβ€˜π‘…) = (Scalarβ€˜π‘…)
6 eqid 2724 . . . 4 (Baseβ€˜(Scalarβ€˜π‘…)) = (Baseβ€˜(Scalarβ€˜π‘…))
7 eqid 2724 . . . 4 ( ·𝑠 β€˜π‘…) = ( ·𝑠 β€˜π‘…)
8 eqid 2724 . . . 4 (Β·π‘–β€˜π‘…) = (Β·π‘–β€˜π‘…)
9 imastset.j . . . 4 𝐽 = (TopOpenβ€˜π‘…)
10 eqid 2724 . . . 4 (distβ€˜π‘…) = (distβ€˜π‘…)
11 eqid 2724 . . . 4 (leβ€˜π‘…) = (leβ€˜π‘…)
12 imasbas.f . . . . 5 (πœ‘ β†’ 𝐹:𝑉–onto→𝐡)
13 imasbas.r . . . . 5 (πœ‘ β†’ 𝑅 ∈ 𝑍)
14 eqid 2724 . . . . 5 (+gβ€˜π‘ˆ) = (+gβ€˜π‘ˆ)
151, 2, 12, 13, 3, 14imasplusg 17459 . . . 4 (πœ‘ β†’ (+gβ€˜π‘ˆ) = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩})
16 eqid 2724 . . . . 5 (.rβ€˜π‘ˆ) = (.rβ€˜π‘ˆ)
171, 2, 12, 13, 4, 16imasmulr 17460 . . . 4 (πœ‘ β†’ (.rβ€˜π‘ˆ) = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩})
18 eqid 2724 . . . . 5 ( ·𝑠 β€˜π‘ˆ) = ( ·𝑠 β€˜π‘ˆ)
191, 2, 12, 13, 5, 6, 7, 18imasvsca 17462 . . . 4 (πœ‘ β†’ ( ·𝑠 β€˜π‘ˆ) = βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž))))
20 eqidd 2725 . . . 4 (πœ‘ β†’ βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩} = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩})
21 eqidd 2725 . . . 4 (πœ‘ β†’ (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹))
22 eqid 2724 . . . . 5 (distβ€˜π‘ˆ) = (distβ€˜π‘ˆ)
231, 2, 12, 13, 10, 22imasds 17455 . . . 4 (πœ‘ β†’ (distβ€˜π‘ˆ) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ inf(βˆͺ 𝑒 ∈ β„• ran (𝑧 ∈ {𝑀 ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑒)) ∣ ((πΉβ€˜(1st β€˜(π‘€β€˜1))) = π‘₯ ∧ (πΉβ€˜(2nd β€˜(π‘€β€˜π‘’))) = 𝑦 ∧ βˆ€π‘£ ∈ (1...(𝑒 βˆ’ 1))(πΉβ€˜(2nd β€˜(π‘€β€˜π‘£))) = (πΉβ€˜(1st β€˜(π‘€β€˜(𝑣 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘…) ∘ 𝑧))), ℝ*, < )))
24 eqidd 2725 . . . 4 (πœ‘ β†’ ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹) = ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 17, 19, 20, 21, 23, 24, 12, 13imasval 17453 . . 3 (πœ‘ β†’ π‘ˆ = (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ˆ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ˆ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ˆ)⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩}))
2625fveq2d 6885 . 2 (πœ‘ β†’ (TopSetβ€˜π‘ˆ) = (TopSetβ€˜(({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ˆ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ˆ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ˆ)⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩})))
27 imastset.o . 2 𝑂 = (TopSetβ€˜π‘ˆ)
28 ovex 7434 . . 3 (𝐽 qTop 𝐹) ∈ V
29 eqid 2724 . . . . 5 (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ˆ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ˆ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ˆ)⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩}) = (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ˆ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ˆ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ˆ)⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩})
3029imasvalstr 17393 . . . 4 (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ˆ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ˆ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ˆ)⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩}) Struct ⟨1, 12⟩
31 tsetid 17294 . . . 4 TopSet = Slot (TopSetβ€˜ndx)
32 snsstp1 4811 . . . . 5 {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩} βŠ† {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩}
33 ssun2 4165 . . . . 5 {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩} βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ˆ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ˆ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ˆ)⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩})
3432, 33sstri 3983 . . . 4 {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩} βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ˆ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ˆ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ˆ)⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩})
3530, 31, 34strfv 17133 . . 3 ((𝐽 qTop 𝐹) ∈ V β†’ (𝐽 qTop 𝐹) = (TopSetβ€˜(({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ˆ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ˆ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ˆ)⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩})))
3628, 35ax-mp 5 . 2 (𝐽 qTop 𝐹) = (TopSetβ€˜(({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), (+gβ€˜π‘ˆ)⟩, ⟨(.rβ€˜ndx), (.rβ€˜π‘ˆ)⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), ( ·𝑠 β€˜π‘ˆ)⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), (𝐽 qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (distβ€˜π‘ˆ)⟩}))
3726, 27, 363eqtr4g 2789 1 (πœ‘ β†’ 𝑂 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3466   βˆͺ cun 3938  {csn 4620  {ctp 4624  βŸ¨cop 4626  βˆͺ ciun 4987  β—‘ccnv 5665   ∘ ccom 5670  β€“ontoβ†’wfo 6531  β€˜cfv 6533  (class class class)co 7401  1c1 11106  2c2 12263  cdc 12673  ndxcnx 17122  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  Β·π‘–cip 17198  TopSetcts 17199  lecple 17200  distcds 17202  TopOpenctopn 17363   qTop cqtop 17445   β€œs cimas 17446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-imas 17450
This theorem is referenced by:  imasle  17465  imastopn  23534  circtopn  33272
  Copyright terms: Public domain W3C validator