MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasbas Structured version   Visualization version   GIF version

Theorem imasbas 17465
Description: The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
imasbas.u (πœ‘ β†’ π‘ˆ = (𝐹 β€œs 𝑅))
imasbas.v (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘…))
imasbas.f (πœ‘ β†’ 𝐹:𝑉–onto→𝐡)
imasbas.r (πœ‘ β†’ 𝑅 ∈ 𝑍)
Assertion
Ref Expression
imasbas (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘ˆ))

Proof of Theorem imasbas
Dummy variables 𝑔 β„Ž 𝑖 𝑛 𝑝 π‘ž π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasbas.u . . . 4 (πœ‘ β†’ π‘ˆ = (𝐹 β€œs 𝑅))
2 imasbas.v . . . 4 (πœ‘ β†’ 𝑉 = (Baseβ€˜π‘…))
3 eqid 2731 . . . 4 (+gβ€˜π‘…) = (+gβ€˜π‘…)
4 eqid 2731 . . . 4 (.rβ€˜π‘…) = (.rβ€˜π‘…)
5 eqid 2731 . . . 4 (Scalarβ€˜π‘…) = (Scalarβ€˜π‘…)
6 eqid 2731 . . . 4 (Baseβ€˜(Scalarβ€˜π‘…)) = (Baseβ€˜(Scalarβ€˜π‘…))
7 eqid 2731 . . . 4 ( ·𝑠 β€˜π‘…) = ( ·𝑠 β€˜π‘…)
8 eqid 2731 . . . 4 (Β·π‘–β€˜π‘…) = (Β·π‘–β€˜π‘…)
9 eqid 2731 . . . 4 (TopOpenβ€˜π‘…) = (TopOpenβ€˜π‘…)
10 eqid 2731 . . . 4 (distβ€˜π‘…) = (distβ€˜π‘…)
11 eqid 2731 . . . 4 (leβ€˜π‘…) = (leβ€˜π‘…)
12 eqidd 2732 . . . 4 (πœ‘ β†’ βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩} = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩})
13 eqidd 2732 . . . 4 (πœ‘ β†’ βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩} = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩})
14 eqidd 2732 . . . 4 (πœ‘ β†’ βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž))) = βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž))))
15 eqidd 2732 . . . 4 (πœ‘ β†’ βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩} = βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩})
16 eqidd 2732 . . . 4 (πœ‘ β†’ ((TopOpenβ€˜π‘…) qTop 𝐹) = ((TopOpenβ€˜π‘…) qTop 𝐹))
17 eqidd 2732 . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = π‘₯ ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = 𝑦 ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘…) ∘ 𝑔))), ℝ*, < )) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = π‘₯ ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = 𝑦 ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘…) ∘ 𝑔))), ℝ*, < )))
18 eqidd 2732 . . . 4 (πœ‘ β†’ ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹) = ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹))
19 imasbas.f . . . 4 (πœ‘ β†’ 𝐹:𝑉–onto→𝐡)
20 imasbas.r . . . 4 (πœ‘ β†’ 𝑅 ∈ 𝑍)
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20imasval 17464 . . 3 (πœ‘ β†’ π‘ˆ = (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), ((TopOpenβ€˜π‘…) qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = π‘₯ ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = 𝑦 ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘…) ∘ 𝑔))), ℝ*, < ))⟩}))
22 eqid 2731 . . . 4 (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), ((TopOpenβ€˜π‘…) qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = π‘₯ ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = 𝑦 ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘…) ∘ 𝑔))), ℝ*, < ))⟩}) = (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), ((TopOpenβ€˜π‘…) qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = π‘₯ ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = 𝑦 ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘…) ∘ 𝑔))), ℝ*, < ))⟩})
2322imasvalstr 17404 . . 3 (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), ((TopOpenβ€˜π‘…) qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = π‘₯ ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = 𝑦 ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘…) ∘ 𝑔))), ℝ*, < ))⟩}) Struct ⟨1, 12⟩
24 baseid 17154 . . 3 Base = Slot (Baseβ€˜ndx)
25 snsstp1 4819 . . . . 5 {⟨(Baseβ€˜ndx), 𝐡⟩} βŠ† {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩}
26 ssun1 4172 . . . . 5 {⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βŠ† ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩})
2725, 26sstri 3991 . . . 4 {⟨(Baseβ€˜ndx), 𝐡⟩} βŠ† ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩})
28 ssun1 4172 . . . 4 ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), ((TopOpenβ€˜π‘…) qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = π‘₯ ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = 𝑦 ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘…) ∘ 𝑔))), ℝ*, < ))⟩})
2927, 28sstri 3991 . . 3 {⟨(Baseβ€˜ndx), 𝐡⟩} βŠ† (({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(+gβ€˜π‘…)π‘ž))⟩}⟩, ⟨(.rβ€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (πΉβ€˜(𝑝(.rβ€˜π‘…)π‘ž))⟩}⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘…)⟩, ⟨( ·𝑠 β€˜ndx), βˆͺ π‘ž ∈ 𝑉 (𝑝 ∈ (Baseβ€˜(Scalarβ€˜π‘…)), π‘₯ ∈ {(πΉβ€˜π‘ž)} ↦ (πΉβ€˜(𝑝( ·𝑠 β€˜π‘…)π‘ž)))⟩, ⟨(Β·π‘–β€˜ndx), βˆͺ 𝑝 ∈ 𝑉 βˆͺ π‘ž ∈ 𝑉 {⟨⟨(πΉβ€˜π‘), (πΉβ€˜π‘ž)⟩, (𝑝(Β·π‘–β€˜π‘…)π‘ž)⟩}⟩}) βˆͺ {⟨(TopSetβ€˜ndx), ((TopOpenβ€˜π‘…) qTop 𝐹)⟩, ⟨(leβ€˜ndx), ((𝐹 ∘ (leβ€˜π‘…)) ∘ ◑𝐹)⟩, ⟨(distβ€˜ndx), (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ inf(βˆͺ 𝑛 ∈ β„• ran (𝑔 ∈ {β„Ž ∈ ((𝑉 Γ— 𝑉) ↑m (1...𝑛)) ∣ ((πΉβ€˜(1st β€˜(β„Žβ€˜1))) = π‘₯ ∧ (πΉβ€˜(2nd β€˜(β„Žβ€˜π‘›))) = 𝑦 ∧ βˆ€π‘– ∈ (1...(𝑛 βˆ’ 1))(πΉβ€˜(2nd β€˜(β„Žβ€˜π‘–))) = (πΉβ€˜(1st β€˜(β„Žβ€˜(𝑖 + 1)))))} ↦ (ℝ*𝑠 Ξ£g ((distβ€˜π‘…) ∘ 𝑔))), ℝ*, < ))⟩})
30 fvex 6904 . . . . 5 (Baseβ€˜π‘…) ∈ V
312, 30eqeltrdi 2840 . . . 4 (πœ‘ β†’ 𝑉 ∈ V)
32 focdmex 7946 . . . 4 (𝑉 ∈ V β†’ (𝐹:𝑉–onto→𝐡 β†’ 𝐡 ∈ V))
3331, 19, 32sylc 65 . . 3 (πœ‘ β†’ 𝐡 ∈ V)
34 eqid 2731 . . 3 (Baseβ€˜π‘ˆ) = (Baseβ€˜π‘ˆ)
3521, 23, 24, 29, 33, 34strfv3 17145 . 2 (πœ‘ β†’ (Baseβ€˜π‘ˆ) = 𝐡)
3635eqcomd 2737 1 (πœ‘ β†’ 𝐡 = (Baseβ€˜π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  {crab 3431  Vcvv 3473   βˆͺ cun 3946  {csn 4628  {ctp 4632  βŸ¨cop 4634  βˆͺ ciun 4997   ↦ cmpt 5231   Γ— cxp 5674  β—‘ccnv 5675  ran crn 5677   ∘ ccom 5680  β€“ontoβ†’wfo 6541  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414  1st c1st 7977  2nd c2nd 7978   ↑m cmap 8826  infcinf 9442  1c1 11117   + caddc 11119  β„*cxr 11254   < clt 11255   βˆ’ cmin 11451  β„•cn 12219  2c2 12274  cdc 12684  ...cfz 13491  ndxcnx 17133  Basecbs 17151  +gcplusg 17204  .rcmulr 17205  Scalarcsca 17207   ·𝑠 cvsca 17208  Β·π‘–cip 17209  TopSetcts 17210  lecple 17211  distcds 17213  TopOpenctopn 17374   Ξ£g cgsu 17393  β„*𝑠cxrs 17453   qTop cqtop 17456   β€œs cimas 17457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-imas 17461
This theorem is referenced by:  qusbas  17498  xpsbas  17525  imasmnd2  18702  imasgrp2  18981  imasabl  19792  imasrng  20078  imasring  20225  imastopn  23545  imastps  23546  imasf1oxms  24319  imasf1oms  24320  imaslmod  32906  imasmhm  32907  imasghm  32908  imasrhm  32909  r1pquslmic  33124  algextdeglem8  33237  circtopn  33283  imasgim  42308  isnumbasgrplem1  42309
  Copyright terms: Public domain W3C validator