| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setcbas | Structured version Visualization version GIF version | ||
| Description: Set of objects of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| setcbas.c | ⊢ 𝐶 = (SetCat‘𝑈) |
| setcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| setcbas | ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setcbas.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 2 | catstr 17978 | . . . 4 ⊢ {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} Struct 〈1, ;15〉 | |
| 3 | baseid 17236 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
| 4 | snsstp1 4797 | . . . 4 ⊢ {〈(Base‘ndx), 𝑈〉} ⊆ {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} | |
| 5 | 2, 3, 4 | strfv 17227 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝑈 = (Base‘{〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑈 = (Base‘{〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
| 7 | setcbas.c | . . . 4 ⊢ 𝐶 = (SetCat‘𝑈) | |
| 8 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥))) | |
| 9 | eqidd 2737 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) | |
| 10 | 7, 1, 8, 9 | setcval 18095 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
| 11 | 10 | fveq2d 6885 | . 2 ⊢ (𝜑 → (Base‘𝐶) = (Base‘{〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑m (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
| 12 | 6, 11 | eqtr4d 2774 | 1 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {ctp 4610 〈cop 4612 × cxp 5657 ∘ ccom 5663 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1st c1st 7991 2nd c2nd 7992 ↑m cmap 8845 1c1 11135 5c5 12303 ;cdc 12713 ndxcnx 17217 Basecbs 17233 Hom chom 17287 compcco 17288 SetCatcsetc 18093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-setc 18094 |
| This theorem is referenced by: setccatid 18102 setcmon 18105 setcepi 18106 setcsect 18107 setcinv 18108 setciso 18109 resssetc 18110 funcsetcres2 18111 setc2obas 18112 cat1lem 18114 funcestrcsetclem3 18159 equivestrcsetc 18169 setc1strwun 18170 funcsetcestrclem7 18178 funcsetcestrclem8 18179 funcsetcestrclem9 18180 fthsetcestrc 18182 fullsetcestrc 18183 hofcl 18276 yonedalem3a 18291 yonedalem4c 18294 yonedalem3b 18296 yonedalem3 18297 yonedainv 18298 yonffthlem 18299 funcringcsetcALTV2lem3 48234 funcringcsetclem3ALTV 48257 nelsubc3 49005 setcthin 49318 setcsnterm 49342 setc1obas 49344 |
| Copyright terms: Public domain | W3C validator |