Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcbasALTV | Structured version Visualization version GIF version |
Description: Set of objects of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringcbasALTV.c | ⊢ 𝐶 = (RingCatALTV‘𝑈) |
ringcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
Ref | Expression |
---|---|
ringcbasALTV | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbasALTV.c | . . 3 ⊢ 𝐶 = (RingCatALTV‘𝑈) | |
2 | ringcbasALTV.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | eqidd 2759 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring)) | |
4 | eqidd 2759 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∩ Ring), 𝑦 ∈ (𝑈 ∩ Ring) ↦ (𝑥 RingHom 𝑦)) = (𝑥 ∈ (𝑈 ∩ Ring), 𝑦 ∈ (𝑈 ∩ Ring) ↦ (𝑥 RingHom 𝑦))) | |
5 | eqidd 2759 | . . 3 ⊢ (𝜑 → (𝑣 ∈ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)), 𝑧 ∈ (𝑈 ∩ Ring) ↦ (𝑓 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔))) = (𝑣 ∈ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)), 𝑧 ∈ (𝑈 ∩ Ring) ↦ (𝑓 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))) | |
6 | 1, 2, 3, 4, 5 | ringcvalALTV 44998 | . 2 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), (𝑈 ∩ Ring)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Ring), 𝑦 ∈ (𝑈 ∩ Ring) ↦ (𝑥 RingHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)), 𝑧 ∈ (𝑈 ∩ Ring) ↦ (𝑓 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉}) |
7 | catstr 17286 | . 2 ⊢ {〈(Base‘ndx), (𝑈 ∩ Ring)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Ring), 𝑦 ∈ (𝑈 ∩ Ring) ↦ (𝑥 RingHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)), 𝑧 ∈ (𝑈 ∩ Ring) ↦ (𝑓 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉} Struct 〈1, ;15〉 | |
8 | baseid 16601 | . 2 ⊢ Base = Slot (Base‘ndx) | |
9 | snsstp1 4706 | . 2 ⊢ {〈(Base‘ndx), (𝑈 ∩ Ring)〉} ⊆ {〈(Base‘ndx), (𝑈 ∩ Ring)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Ring), 𝑦 ∈ (𝑈 ∩ Ring) ↦ (𝑥 RingHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)), 𝑧 ∈ (𝑈 ∩ Ring) ↦ (𝑓 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RingHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉} | |
10 | inex1g 5189 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
11 | 2, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
12 | ringcbasALTV.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
13 | 6, 7, 8, 9, 11, 12 | strfv3 16590 | 1 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Ring)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∩ cin 3857 {ctp 4526 〈cop 4528 × cxp 5522 ∘ ccom 5528 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 1st c1st 7691 2nd c2nd 7692 1c1 10576 5c5 11732 ;cdc 12137 ndxcnx 16538 Basecbs 16541 Hom chom 16634 compcco 16635 Ringcrg 19365 RingHom crh 19535 RingCatALTVcringcALTV 44995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-hom 16647 df-cco 16648 df-ringcALTV 44997 |
This theorem is referenced by: ringchomfvalALTV 45038 ringccofvalALTV 45041 ringccatidALTV 45043 ringcbasbasALTV 45049 funcringcsetclem7ALTV 45056 srhmsubcALTVlem1 45083 srhmsubcALTV 45085 |
Copyright terms: Public domain | W3C validator |