![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcbasALTV | Structured version Visualization version GIF version |
Description: Set of objects of the category of rings (in a universe). (Contributed by AV, 13-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringcbasALTV.c | β’ πΆ = (RingCatALTVβπ) |
ringcbasALTV.b | β’ π΅ = (BaseβπΆ) |
ringcbasALTV.u | β’ (π β π β π) |
Ref | Expression |
---|---|
ringcbasALTV | β’ (π β π΅ = (π β© Ring)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcbasALTV.c | . . 3 β’ πΆ = (RingCatALTVβπ) | |
2 | ringcbasALTV.u | . . 3 β’ (π β π β π) | |
3 | eqidd 2726 | . . 3 β’ (π β (π β© Ring) = (π β© Ring)) | |
4 | eqidd 2726 | . . 3 β’ (π β (π₯ β (π β© Ring), π¦ β (π β© Ring) β¦ (π₯ RingHom π¦)) = (π₯ β (π β© Ring), π¦ β (π β© Ring) β¦ (π₯ RingHom π¦))) | |
5 | eqidd 2726 | . . 3 β’ (π β (π£ β ((π β© Ring) Γ (π β© Ring)), π§ β (π β© Ring) β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd βπ£)) β¦ (π β π))) = (π£ β ((π β© Ring) Γ (π β© Ring)), π§ β (π β© Ring) β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd βπ£)) β¦ (π β π)))) | |
6 | 1, 2, 3, 4, 5 | ringcvalALTV 47459 | . 2 β’ (π β πΆ = {β¨(Baseβndx), (π β© Ring)β©, β¨(Hom βndx), (π₯ β (π β© Ring), π¦ β (π β© Ring) β¦ (π₯ RingHom π¦))β©, β¨(compβndx), (π£ β ((π β© Ring) Γ (π β© Ring)), π§ β (π β© Ring) β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd βπ£)) β¦ (π β π)))β©}) |
7 | catstr 17942 | . 2 β’ {β¨(Baseβndx), (π β© Ring)β©, β¨(Hom βndx), (π₯ β (π β© Ring), π¦ β (π β© Ring) β¦ (π₯ RingHom π¦))β©, β¨(compβndx), (π£ β ((π β© Ring) Γ (π β© Ring)), π§ β (π β© Ring) β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd βπ£)) β¦ (π β π)))β©} Struct β¨1, ;15β© | |
8 | baseid 17177 | . 2 β’ Base = Slot (Baseβndx) | |
9 | snsstp1 4816 | . 2 β’ {β¨(Baseβndx), (π β© Ring)β©} β {β¨(Baseβndx), (π β© Ring)β©, β¨(Hom βndx), (π₯ β (π β© Ring), π¦ β (π β© Ring) β¦ (π₯ RingHom π¦))β©, β¨(compβndx), (π£ β ((π β© Ring) Γ (π β© Ring)), π§ β (π β© Ring) β¦ (π β ((2nd βπ£) RingHom π§), π β ((1st βπ£) RingHom (2nd βπ£)) β¦ (π β π)))β©} | |
10 | inex1g 5315 | . . 3 β’ (π β π β (π β© Ring) β V) | |
11 | 2, 10 | syl 17 | . 2 β’ (π β (π β© Ring) β V) |
12 | ringcbasALTV.b | . 2 β’ π΅ = (BaseβπΆ) | |
13 | 6, 7, 8, 9, 11, 12 | strfv3 17168 | 1 β’ (π β π΅ = (π β© Ring)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3463 β© cin 3940 {ctp 4629 β¨cop 4631 Γ cxp 5671 β ccom 5677 βcfv 6543 (class class class)co 7413 β cmpo 7415 1st c1st 7985 2nd c2nd 7986 1c1 11134 5c5 12295 ;cdc 12702 ndxcnx 17156 Basecbs 17174 Hom chom 17238 compcco 17239 Ringcrg 20172 RingHom crh 20407 RingCatALTVcringcALTV 47457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-struct 17110 df-slot 17145 df-ndx 17157 df-base 17175 df-hom 17251 df-cco 17252 df-ringcALTV 47458 |
This theorem is referenced by: ringchomfvalALTV 47471 ringccofvalALTV 47474 ringccatidALTV 47476 ringcbasbasALTV 47482 funcringcsetclem7ALTV 47489 srhmsubcALTVlem1 47493 srhmsubcALTV 47495 |
Copyright terms: Public domain | W3C validator |