![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgbas | Structured version Visualization version GIF version |
Description: Base of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
Ref | Expression |
---|---|
idlsrgbas.1 | ⊢ 𝑆 = (IDLsrg‘𝑅) |
idlsrgbas.2 | ⊢ 𝐼 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
idlsrgbas | ⊢ (𝑅 ∈ 𝑉 → 𝐼 = (Base‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgbas.2 | . . . 4 ⊢ 𝐼 = (LIdeal‘𝑅) | |
2 | 1 | fvexi 6920 | . . 3 ⊢ 𝐼 ∈ V |
3 | eqid 2734 | . . . . 5 ⊢ ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) | |
4 | 3 | idlsrgstr 33509 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) Struct 〈1, ;10〉 |
5 | baseid 17247 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
6 | snsstp1 4820 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐼〉} ⊆ {〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} | |
7 | ssun1 4187 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ⊆ ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) | |
8 | 6, 7 | sstri 4004 | . . . 4 ⊢ {〈(Base‘ndx), 𝐼〉} ⊆ ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) |
9 | 4, 5, 8 | strfv 17237 | . . 3 ⊢ (𝐼 ∈ V → 𝐼 = (Base‘({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}))) |
10 | 2, 9 | ax-mp 5 | . 2 ⊢ 𝐼 = (Base‘({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) |
11 | idlsrgbas.1 | . . . 4 ⊢ 𝑆 = (IDLsrg‘𝑅) | |
12 | eqid 2734 | . . . . 5 ⊢ (LSSum‘𝑅) = (LSSum‘𝑅) | |
13 | eqid 2734 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
14 | eqid 2734 | . . . . 5 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
15 | 1, 12, 13, 14 | idlsrgval 33510 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (IDLsrg‘𝑅) = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) |
16 | 11, 15 | eqtrid 2786 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) |
17 | 16 | fveq2d 6910 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑆) = (Base‘({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}))) |
18 | 10, 17 | eqtr4id 2793 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐼 = (Base‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 {crab 3432 Vcvv 3477 ∪ cun 3960 ⊆ wss 3962 {csn 4630 {cpr 4632 {ctp 4634 〈cop 4636 {copab 5209 ↦ cmpt 5230 ran crn 5689 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 0cc0 11152 1c1 11153 ;cdc 12730 ndxcnx 17226 Basecbs 17244 +gcplusg 17297 .rcmulr 17298 TopSetcts 17303 lecple 17304 LSSumclsm 19666 mulGrpcmgp 20151 LIdealclidl 21233 RSpancrsp 21234 IDLsrgcidlsrg 33507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-mulr 17311 df-tset 17316 df-ple 17317 df-idlsrg 33508 |
This theorem is referenced by: idlsrg0g 33513 idlsrgmnd 33521 idlsrgcmnd 33522 rspecbas 33825 rspectopn 33827 |
Copyright terms: Public domain | W3C validator |