| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgbas | Structured version Visualization version GIF version | ||
| Description: Base of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| idlsrgbas.1 | ⊢ 𝑆 = (IDLsrg‘𝑅) |
| idlsrgbas.2 | ⊢ 𝐼 = (LIdeal‘𝑅) |
| Ref | Expression |
|---|---|
| idlsrgbas | ⊢ (𝑅 ∈ 𝑉 → 𝐼 = (Base‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlsrgbas.2 | . . . 4 ⊢ 𝐼 = (LIdeal‘𝑅) | |
| 2 | 1 | fvexi 6854 | . . 3 ⊢ 𝐼 ∈ V |
| 3 | eqid 2729 | . . . . 5 ⊢ ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) | |
| 4 | 3 | idlsrgstr 33446 | . . . 4 ⊢ ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) Struct 〈1, ;10〉 |
| 5 | baseid 17158 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
| 6 | snsstp1 4776 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐼〉} ⊆ {〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} | |
| 7 | ssun1 4137 | . . . . 5 ⊢ {〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ⊆ ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) | |
| 8 | 6, 7 | sstri 3953 | . . . 4 ⊢ {〈(Base‘ndx), 𝐼〉} ⊆ ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}) |
| 9 | 4, 5, 8 | strfv 17149 | . . 3 ⊢ (𝐼 ∈ V → 𝐼 = (Base‘({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}))) |
| 10 | 2, 9 | ax-mp 5 | . 2 ⊢ 𝐼 = (Base‘({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) |
| 11 | idlsrgbas.1 | . . . 4 ⊢ 𝑆 = (IDLsrg‘𝑅) | |
| 12 | eqid 2729 | . . . . 5 ⊢ (LSSum‘𝑅) = (LSSum‘𝑅) | |
| 13 | eqid 2729 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 14 | eqid 2729 | . . . . 5 ⊢ (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅)) | |
| 15 | 1, 12, 13, 14 | idlsrgval 33447 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (IDLsrg‘𝑅) = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) |
| 16 | 11, 15 | eqtrid 2776 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = ({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉})) |
| 17 | 16 | fveq2d 6844 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Base‘𝑆) = (Base‘({〈(Base‘ndx), 𝐼〉, 〈(+g‘ndx), (LSSum‘𝑅)〉, 〈(.r‘ndx), (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))〉} ∪ {〈(TopSet‘ndx), ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝐼 ∧ 𝑖 ⊆ 𝑗)}〉}))) |
| 18 | 10, 17 | eqtr4id 2783 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐼 = (Base‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 ∪ cun 3909 ⊆ wss 3911 {csn 4585 {cpr 4587 {ctp 4589 〈cop 4591 {copab 5164 ↦ cmpt 5183 ran crn 5632 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 0cc0 11044 1c1 11045 ;cdc 12625 ndxcnx 17139 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 TopSetcts 17202 lecple 17203 LSSumclsm 19540 mulGrpcmgp 20025 LIdealclidl 21092 RSpancrsp 21093 IDLsrgcidlsrg 33444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ple 17216 df-idlsrg 33445 |
| This theorem is referenced by: idlsrg0g 33450 idlsrgmnd 33458 idlsrgcmnd 33459 rspecbas 33828 rspectopn 33830 |
| Copyright terms: Public domain | W3C validator |