Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgbas Structured version   Visualization version   GIF version

Theorem idlsrgbas 31887
Description: Baae of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrgbas.1 𝑆 = (IDLsrg‘𝑅)
idlsrgbas.2 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
idlsrgbas (𝑅𝑉𝐼 = (Base‘𝑆))

Proof of Theorem idlsrgbas
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlsrgbas.2 . . . 4 𝐼 = (LIdeal‘𝑅)
21fvexi 6833 . . 3 𝐼 ∈ V
3 eqid 2736 . . . . 5 ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}) = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})
43idlsrgstr 31885 . . . 4 ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}) Struct ⟨1, 10⟩
5 baseid 17004 . . . 4 Base = Slot (Base‘ndx)
6 snsstp1 4762 . . . . 5 {⟨(Base‘ndx), 𝐼⟩} ⊆ {⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩}
7 ssun1 4118 . . . . 5 {⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ⊆ ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})
86, 7sstri 3940 . . . 4 {⟨(Base‘ndx), 𝐼⟩} ⊆ ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})
94, 5, 8strfv 16994 . . 3 (𝐼 ∈ V → 𝐼 = (Base‘({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})))
102, 9ax-mp 5 . 2 𝐼 = (Base‘({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
11 idlsrgbas.1 . . . 4 𝑆 = (IDLsrg‘𝑅)
12 eqid 2736 . . . . 5 (LSSum‘𝑅) = (LSSum‘𝑅)
13 eqid 2736 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
14 eqid 2736 . . . . 5 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
151, 12, 13, 14idlsrgval 31886 . . . 4 (𝑅𝑉 → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
1611, 15eqtrid 2788 . . 3 (𝑅𝑉𝑆 = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
1716fveq2d 6823 . 2 (𝑅𝑉 → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})))
1810, 17eqtr4id 2795 1 (𝑅𝑉𝐼 = (Base‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  {crab 3403  Vcvv 3441  cun 3895  wss 3897  {csn 4572  {cpr 4574  {ctp 4576  cop 4578  {copab 5151  cmpt 5172  ran crn 5615  cfv 6473  (class class class)co 7329  cmpo 7331  0cc0 10964  1c1 10965  cdc 12530  ndxcnx 16983  Basecbs 17001  +gcplusg 17051  .rcmulr 17052  TopSetcts 17057  lecple 17058  LSSumclsm 19327  mulGrpcmgp 19807  LIdealclidl 20530  RSpancrsp 20531  IDLsrgcidlsrg 31883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-fz 13333  df-struct 16937  df-slot 16972  df-ndx 16984  df-base 17002  df-plusg 17064  df-mulr 17065  df-tset 17070  df-ple 17071  df-idlsrg 31884
This theorem is referenced by:  idlsrg0g  31889  idlsrgmnd  31897  idlsrgcmnd  31898  rspecbas  32054  rspectopn  32056
  Copyright terms: Public domain W3C validator