![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > catcbas | Structured version Visualization version GIF version |
Description: Set of objects of the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
catcbas.c | β’ πΆ = (CatCatβπ) |
catcbas.b | β’ π΅ = (BaseβπΆ) |
catcbas.u | β’ (π β π β π) |
Ref | Expression |
---|---|
catcbas | β’ (π β π΅ = (π β© Cat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catcbas.c | . . 3 β’ πΆ = (CatCatβπ) | |
2 | catcbas.u | . . 3 β’ (π β π β π) | |
3 | eqidd 2729 | . . 3 β’ (π β (π β© Cat) = (π β© Cat)) | |
4 | eqidd 2729 | . . 3 β’ (π β (π₯ β (π β© Cat), π¦ β (π β© Cat) β¦ (π₯ Func π¦)) = (π₯ β (π β© Cat), π¦ β (π β© Cat) β¦ (π₯ Func π¦))) | |
5 | eqidd 2729 | . . 3 β’ (π β (π£ β ((π β© Cat) Γ (π β© Cat)), π§ β (π β© Cat) β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π))) = (π£ β ((π β© Cat) Γ (π β© Cat)), π§ β (π β© Cat) β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))) | |
6 | 1, 2, 3, 4, 5 | catcval 18096 | . 2 β’ (π β πΆ = {β¨(Baseβndx), (π β© Cat)β©, β¨(Hom βndx), (π₯ β (π β© Cat), π¦ β (π β© Cat) β¦ (π₯ Func π¦))β©, β¨(compβndx), (π£ β ((π β© Cat) Γ (π β© Cat)), π§ β (π β© Cat) β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))β©}) |
7 | catstr 17955 | . 2 β’ {β¨(Baseβndx), (π β© Cat)β©, β¨(Hom βndx), (π₯ β (π β© Cat), π¦ β (π β© Cat) β¦ (π₯ Func π¦))β©, β¨(compβndx), (π£ β ((π β© Cat) Γ (π β© Cat)), π§ β (π β© Cat) β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))β©} Struct β¨1, ;15β© | |
8 | baseid 17190 | . 2 β’ Base = Slot (Baseβndx) | |
9 | snsstp1 4824 | . 2 β’ {β¨(Baseβndx), (π β© Cat)β©} β {β¨(Baseβndx), (π β© Cat)β©, β¨(Hom βndx), (π₯ β (π β© Cat), π¦ β (π β© Cat) β¦ (π₯ Func π¦))β©, β¨(compβndx), (π£ β ((π β© Cat) Γ (π β© Cat)), π§ β (π β© Cat) β¦ (π β ((2nd βπ£) Func π§), π β ( Func βπ£) β¦ (π βfunc π)))β©} | |
10 | inex1g 5323 | . . 3 β’ (π β π β (π β© Cat) β V) | |
11 | 2, 10 | syl 17 | . 2 β’ (π β (π β© Cat) β V) |
12 | catcbas.b | . 2 β’ π΅ = (BaseβπΆ) | |
13 | 6, 7, 8, 9, 11, 12 | strfv3 17181 | 1 β’ (π β π΅ = (π β© Cat)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3473 β© cin 3948 {ctp 4636 β¨cop 4638 Γ cxp 5680 βcfv 6553 (class class class)co 7426 β cmpo 7428 2nd c2nd 7998 1c1 11147 5c5 12308 ;cdc 12715 ndxcnx 17169 Basecbs 17187 Hom chom 17251 compcco 17252 Catccat 17651 Func cfunc 17847 βfunc ccofu 17849 CatCatccatc 18094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17188 df-hom 17264 df-cco 17265 df-catc 18095 |
This theorem is referenced by: catchomfval 18098 catccofval 18100 catccatid 18102 resscatc 18105 catcisolem 18106 catciso 18107 catcbascl 18108 catcoppccl 18113 catcoppcclOLD 18114 catcfuccl 18115 catcfucclOLD 18116 catcxpccl 18205 catcxpcclOLD 18206 yoniso 18284 |
Copyright terms: Public domain | W3C validator |