![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > catcbas | Structured version Visualization version GIF version |
Description: Set of objects of the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
catcbas.c | ⊢ 𝐶 = (CatCat‘𝑈) |
catcbas.b | ⊢ 𝐵 = (Base‘𝐶) |
catcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
Ref | Expression |
---|---|
catcbas | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catcbas.c | . . 3 ⊢ 𝐶 = (CatCat‘𝑈) | |
2 | catcbas.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | eqidd 2825 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Cat) = (𝑈 ∩ Cat)) | |
4 | eqidd 2825 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∩ Cat), 𝑦 ∈ (𝑈 ∩ Cat) ↦ (𝑥 Func 𝑦)) = (𝑥 ∈ (𝑈 ∩ Cat), 𝑦 ∈ (𝑈 ∩ Cat) ↦ (𝑥 Func 𝑦))) | |
5 | eqidd 2825 | . . 3 ⊢ (𝜑 → (𝑣 ∈ ((𝑈 ∩ Cat) × (𝑈 ∩ Cat)), 𝑧 ∈ (𝑈 ∩ Cat) ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓))) = (𝑣 ∈ ((𝑈 ∩ Cat) × (𝑈 ∩ Cat)), 𝑧 ∈ (𝑈 ∩ Cat) ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))) | |
6 | 1, 2, 3, 4, 5 | catcval 17097 | . 2 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), (𝑈 ∩ Cat)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Cat), 𝑦 ∈ (𝑈 ∩ Cat) ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Cat) × (𝑈 ∩ Cat)), 𝑧 ∈ (𝑈 ∩ Cat) ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉}) |
7 | catstr 16968 | . 2 ⊢ {〈(Base‘ndx), (𝑈 ∩ Cat)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Cat), 𝑦 ∈ (𝑈 ∩ Cat) ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Cat) × (𝑈 ∩ Cat)), 𝑧 ∈ (𝑈 ∩ Cat) ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉} Struct 〈1, ;15〉 | |
8 | baseid 16281 | . 2 ⊢ Base = Slot (Base‘ndx) | |
9 | snsstp1 4564 | . 2 ⊢ {〈(Base‘ndx), (𝑈 ∩ Cat)〉} ⊆ {〈(Base‘ndx), (𝑈 ∩ Cat)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Cat), 𝑦 ∈ (𝑈 ∩ Cat) ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Cat) × (𝑈 ∩ Cat)), 𝑧 ∈ (𝑈 ∩ Cat) ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉} | |
10 | inex1g 5025 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Cat) ∈ V) | |
11 | 2, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∩ Cat) ∈ V) |
12 | catcbas.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
13 | 6, 7, 8, 9, 11, 12 | strfv3 16270 | 1 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 Vcvv 3413 ∩ cin 3796 {ctp 4400 〈cop 4402 × cxp 5339 ‘cfv 6122 (class class class)co 6904 ↦ cmpt2 6906 2nd c2nd 7426 1c1 10252 5c5 11408 ;cdc 11820 ndxcnx 16218 Basecbs 16221 Hom chom 16315 compcco 16316 Catccat 16676 Func cfunc 16865 ∘func ccofu 16867 CatCatccatc 17095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-oadd 7829 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-2 11413 df-3 11414 df-4 11415 df-5 11416 df-6 11417 df-7 11418 df-8 11419 df-9 11420 df-n0 11618 df-z 11704 df-dec 11821 df-uz 11968 df-fz 12619 df-struct 16223 df-ndx 16224 df-slot 16225 df-base 16227 df-hom 16328 df-cco 16329 df-catc 17096 |
This theorem is referenced by: catchomfval 17099 catccofval 17101 catccatid 17103 resscatc 17106 catcisolem 17107 catciso 17108 catcoppccl 17109 catcfuccl 17110 catcxpccl 17199 yoniso 17277 |
Copyright terms: Public domain | W3C validator |