Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcbasALTV | Structured version Visualization version GIF version |
Description: Set of objects of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
Ref | Expression |
---|---|
rngcbasALTV | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbasALTV.c | . . 3 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
2 | rngcbasALTV.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | eqidd 2737 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng)) | |
4 | eqidd 2737 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHomo 𝑦)) = (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHomo 𝑦))) | |
5 | eqidd 2737 | . . 3 ⊢ (𝜑 → (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔))) = (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))) | |
6 | 1, 2, 3, 4, 5 | rngcvalALTV 45789 | . 2 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉}) |
7 | catstr 17748 | . 2 ⊢ {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉} Struct 〈1, ;15〉 | |
8 | baseid 16989 | . 2 ⊢ Base = Slot (Base‘ndx) | |
9 | snsstp1 4760 | . 2 ⊢ {〈(Base‘ndx), (𝑈 ∩ Rng)〉} ⊆ {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHomo 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHomo 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHomo (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉} | |
10 | inex1g 5257 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
11 | 2, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
12 | rngcbasALTV.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
13 | 6, 7, 8, 9, 11, 12 | strfv3 16980 | 1 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3440 ∩ cin 3895 {ctp 4574 〈cop 4576 × cxp 5605 ∘ ccom 5611 ‘cfv 6465 (class class class)co 7316 ∈ cmpo 7318 1st c1st 7875 2nd c2nd 7876 1c1 10951 5c5 12110 ;cdc 12516 ndxcnx 16968 Basecbs 16986 Hom chom 17047 compcco 17048 Rngcrng 45702 RngHomo crngh 45713 RngCatALTVcrngcALTV 45786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-tp 4575 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-3 12116 df-4 12117 df-5 12118 df-6 12119 df-7 12120 df-8 12121 df-9 12122 df-n0 12313 df-z 12399 df-dec 12517 df-uz 12662 df-fz 13319 df-struct 16922 df-slot 16957 df-ndx 16969 df-base 16987 df-hom 17060 df-cco 17061 df-rngcALTV 45788 |
This theorem is referenced by: rngchomfvalALTV 45812 rngccofvalALTV 45815 rngccatidALTV 45817 rngchomrnghmresALTV 45824 rhmsubcALTVlem3 45934 rhmsubcALTVlem4 45935 |
Copyright terms: Public domain | W3C validator |