| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcbasALTV | Structured version Visualization version GIF version | ||
| Description: Set of objects of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
| Ref | Expression |
|---|---|
| rngcbasALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcbasALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
| rngcbasALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| rngcbasALTV | ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcbasALTV.c | . . 3 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 2 | rngcbasALTV.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 3 | eqidd 2730 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng)) | |
| 4 | eqidd 2730 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦)) = (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦))) | |
| 5 | eqidd 2730 | . . 3 ⊢ (𝜑 → (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔))) = (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))) | |
| 6 | 1, 2, 3, 4, 5 | rngcvalALTV 48253 | . 2 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉}) |
| 7 | catstr 17867 | . 2 ⊢ {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉} Struct 〈1, ;15〉 | |
| 8 | baseid 17123 | . 2 ⊢ Base = Slot (Base‘ndx) | |
| 9 | snsstp1 4767 | . 2 ⊢ {〈(Base‘ndx), (𝑈 ∩ Rng)〉} ⊆ {〈(Base‘ndx), (𝑈 ∩ Rng)〉, 〈(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑔 ∈ ((1st ‘𝑣) RngHom (2nd ‘𝑣)) ↦ (𝑓 ∘ 𝑔)))〉} | |
| 10 | inex1g 5258 | . . 3 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) | |
| 11 | 2, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∩ Rng) ∈ V) |
| 12 | rngcbasALTV.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
| 13 | 6, 7, 8, 9, 11, 12 | strfv3 17115 | 1 ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Rng)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 {ctp 4581 〈cop 4583 × cxp 5617 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 1st c1st 7922 2nd c2nd 7923 1c1 11010 5c5 12186 ;cdc 12591 ndxcnx 17104 Basecbs 17120 Hom chom 17172 compcco 17173 Rngcrng 20037 RngHom crnghm 20319 RngCatALTVcrngcALTV 48251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-rngcALTV 48252 |
| This theorem is referenced by: rngchomfvalALTV 48255 rngccofvalALTV 48258 rngccatidALTV 48260 rngchomrnghmresALTV 48267 rhmsubcALTVlem3 48271 rhmsubcALTVlem4 48272 |
| Copyright terms: Public domain | W3C validator |