![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcbasALTV | Structured version Visualization version GIF version |
Description: Set of objects of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
rngcbasALTV.c | β’ πΆ = (RngCatALTVβπ) |
rngcbasALTV.b | β’ π΅ = (BaseβπΆ) |
rngcbasALTV.u | β’ (π β π β π) |
Ref | Expression |
---|---|
rngcbasALTV | β’ (π β π΅ = (π β© Rng)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbasALTV.c | . . 3 β’ πΆ = (RngCatALTVβπ) | |
2 | rngcbasALTV.u | . . 3 β’ (π β π β π) | |
3 | eqidd 2731 | . . 3 β’ (π β (π β© Rng) = (π β© Rng)) | |
4 | eqidd 2731 | . . 3 β’ (π β (π₯ β (π β© Rng), π¦ β (π β© Rng) β¦ (π₯ RngHom π¦)) = (π₯ β (π β© Rng), π¦ β (π β© Rng) β¦ (π₯ RngHom π¦))) | |
5 | eqidd 2731 | . . 3 β’ (π β (π£ β ((π β© Rng) Γ (π β© Rng)), π§ β (π β© Rng) β¦ (π β ((2nd βπ£) RngHom π§), π β ((1st βπ£) RngHom (2nd βπ£)) β¦ (π β π))) = (π£ β ((π β© Rng) Γ (π β© Rng)), π§ β (π β© Rng) β¦ (π β ((2nd βπ£) RngHom π§), π β ((1st βπ£) RngHom (2nd βπ£)) β¦ (π β π)))) | |
6 | 1, 2, 3, 4, 5 | rngcvalALTV 46947 | . 2 β’ (π β πΆ = {β¨(Baseβndx), (π β© Rng)β©, β¨(Hom βndx), (π₯ β (π β© Rng), π¦ β (π β© Rng) β¦ (π₯ RngHom π¦))β©, β¨(compβndx), (π£ β ((π β© Rng) Γ (π β© Rng)), π§ β (π β© Rng) β¦ (π β ((2nd βπ£) RngHom π§), π β ((1st βπ£) RngHom (2nd βπ£)) β¦ (π β π)))β©}) |
7 | catstr 17913 | . 2 β’ {β¨(Baseβndx), (π β© Rng)β©, β¨(Hom βndx), (π₯ β (π β© Rng), π¦ β (π β© Rng) β¦ (π₯ RngHom π¦))β©, β¨(compβndx), (π£ β ((π β© Rng) Γ (π β© Rng)), π§ β (π β© Rng) β¦ (π β ((2nd βπ£) RngHom π§), π β ((1st βπ£) RngHom (2nd βπ£)) β¦ (π β π)))β©} Struct β¨1, ;15β© | |
8 | baseid 17151 | . 2 β’ Base = Slot (Baseβndx) | |
9 | snsstp1 4818 | . 2 β’ {β¨(Baseβndx), (π β© Rng)β©} β {β¨(Baseβndx), (π β© Rng)β©, β¨(Hom βndx), (π₯ β (π β© Rng), π¦ β (π β© Rng) β¦ (π₯ RngHom π¦))β©, β¨(compβndx), (π£ β ((π β© Rng) Γ (π β© Rng)), π§ β (π β© Rng) β¦ (π β ((2nd βπ£) RngHom π§), π β ((1st βπ£) RngHom (2nd βπ£)) β¦ (π β π)))β©} | |
10 | inex1g 5318 | . . 3 β’ (π β π β (π β© Rng) β V) | |
11 | 2, 10 | syl 17 | . 2 β’ (π β (π β© Rng) β V) |
12 | rngcbasALTV.b | . 2 β’ π΅ = (BaseβπΆ) | |
13 | 6, 7, 8, 9, 11, 12 | strfv3 17142 | 1 β’ (π β π΅ = (π β© Rng)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 Vcvv 3472 β© cin 3946 {ctp 4631 β¨cop 4633 Γ cxp 5673 β ccom 5679 βcfv 6542 (class class class)co 7411 β cmpo 7413 1st c1st 7975 2nd c2nd 7976 1c1 11113 5c5 12274 ;cdc 12681 ndxcnx 17130 Basecbs 17148 Hom chom 17212 compcco 17213 Rngcrng 20046 RngHom crnghm 20325 RngCatALTVcrngcALTV 46944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13489 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-hom 17225 df-cco 17226 df-rngcALTV 46946 |
This theorem is referenced by: rngchomfvalALTV 46970 rngccofvalALTV 46973 rngccatidALTV 46975 rngchomrnghmresALTV 46982 rhmsubcALTVlem3 47092 rhmsubcALTVlem4 47093 |
Copyright terms: Public domain | W3C validator |