Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcbasALTV Structured version   Visualization version   GIF version

Theorem rngcbasALTV 47592
Description: Set of objects of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rngcbasALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcbasALTV.b 𝐵 = (Base‘𝐶)
rngcbasALTV.u (𝜑𝑈𝑉)
Assertion
Ref Expression
rngcbasALTV (𝜑𝐵 = (𝑈 ∩ Rng))

Proof of Theorem rngcbasALTV
Dummy variables 𝑓 𝑔 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngcbasALTV.c . . 3 𝐶 = (RngCatALTV‘𝑈)
2 rngcbasALTV.u . . 3 (𝜑𝑈𝑉)
3 eqidd 2726 . . 3 (𝜑 → (𝑈 ∩ Rng) = (𝑈 ∩ Rng))
4 eqidd 2726 . . 3 (𝜑 → (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦)) = (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦)))
5 eqidd 2726 . . 3 (𝜑 → (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd𝑣) RngHom 𝑧), 𝑔 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑓𝑔))) = (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd𝑣) RngHom 𝑧), 𝑔 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑓𝑔))))
61, 2, 3, 4, 5rngcvalALTV 47591 . 2 (𝜑𝐶 = {⟨(Base‘ndx), (𝑈 ∩ Rng)⟩, ⟨(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd𝑣) RngHom 𝑧), 𝑔 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑓𝑔)))⟩})
7 catstr 17976 . 2 {⟨(Base‘ndx), (𝑈 ∩ Rng)⟩, ⟨(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd𝑣) RngHom 𝑧), 𝑔 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑓𝑔)))⟩} Struct ⟨1, 15⟩
8 baseid 17211 . 2 Base = Slot (Base‘ndx)
9 snsstp1 4824 . 2 {⟨(Base‘ndx), (𝑈 ∩ Rng)⟩} ⊆ {⟨(Base‘ndx), (𝑈 ∩ Rng)⟩, ⟨(Hom ‘ndx), (𝑥 ∈ (𝑈 ∩ Rng), 𝑦 ∈ (𝑈 ∩ Rng) ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑈 ∩ Rng) × (𝑈 ∩ Rng)), 𝑧 ∈ (𝑈 ∩ Rng) ↦ (𝑓 ∈ ((2nd𝑣) RngHom 𝑧), 𝑔 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑓𝑔)))⟩}
10 inex1g 5323 . . 3 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
112, 10syl 17 . 2 (𝜑 → (𝑈 ∩ Rng) ∈ V)
12 rngcbasALTV.b . 2 𝐵 = (Base‘𝐶)
136, 7, 8, 9, 11, 12strfv3 17202 1 (𝜑𝐵 = (𝑈 ∩ Rng))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3461  cin 3945  {ctp 4636  cop 4638   × cxp 5679  ccom 5685  cfv 6553  (class class class)co 7423  cmpo 7425  1st c1st 8000  2nd c2nd 8001  1c1 11155  5c5 12317  cdc 12724  ndxcnx 17190  Basecbs 17208  Hom chom 17272  compcco 17273  Rngcrng 20130   RngHom crnghm 20411  RngCatALTVcrngcALTV 47589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-z 12606  df-dec 12725  df-uz 12870  df-fz 13534  df-struct 17144  df-slot 17179  df-ndx 17191  df-base 17209  df-hom 17285  df-cco 17286  df-rngcALTV 47590
This theorem is referenced by:  rngchomfvalALTV  47593  rngccofvalALTV  47596  rngccatidALTV  47598  rngchomrnghmresALTV  47605  rhmsubcALTVlem3  47609  rhmsubcALTVlem4  47610
  Copyright terms: Public domain W3C validator