MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imassca Structured version   Visualization version   GIF version

Theorem imassca 17482
Description: The scalar field of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imassca.g 𝐺 = (Scalar‘𝑅)
Assertion
Ref Expression
imassca (𝜑𝐺 = (Scalar‘𝑈))

Proof of Theorem imassca
Dummy variables 𝑔 𝑖 𝑛 𝑝 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassca.g . . . 4 𝐺 = (Scalar‘𝑅)
21fvexi 6872 . . 3 𝐺 ∈ V
3 eqid 2729 . . . . 5 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
43imasvalstr 17414 . . . 4 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}) Struct ⟨1, 12⟩
5 scaid 17278 . . . 4 Scalar = Slot (Scalar‘ndx)
6 snsstp1 4780 . . . . . 6 {⟨(Scalar‘ndx), 𝐺⟩} ⊆ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}
7 ssun2 4142 . . . . . 6 {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩})
86, 7sstri 3956 . . . . 5 {⟨(Scalar‘ndx), 𝐺⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩})
9 ssun1 4141 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
108, 9sstri 3956 . . . 4 {⟨(Scalar‘ndx), 𝐺⟩} ⊆ (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})
114, 5, 10strfv 17173 . . 3 (𝐺 ∈ V → 𝐺 = (Scalar‘(({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})))
122, 11ax-mp 5 . 2 𝐺 = (Scalar‘(({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
13 imasbas.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
14 imasbas.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
15 eqid 2729 . . . 4 (+g𝑅) = (+g𝑅)
16 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
17 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
18 eqid 2729 . . . 4 ( ·𝑠𝑅) = ( ·𝑠𝑅)
19 eqid 2729 . . . 4 (·𝑖𝑅) = (·𝑖𝑅)
20 eqid 2729 . . . 4 (TopOpen‘𝑅) = (TopOpen‘𝑅)
21 eqid 2729 . . . 4 (dist‘𝑅) = (dist‘𝑅)
22 eqid 2729 . . . 4 (le‘𝑅) = (le‘𝑅)
23 imasbas.f . . . . 5 (𝜑𝐹:𝑉onto𝐵)
24 imasbas.r . . . . 5 (𝜑𝑅𝑍)
25 eqid 2729 . . . . 5 (+g𝑈) = (+g𝑈)
2613, 14, 23, 24, 15, 25imasplusg 17480 . . . 4 (𝜑 → (+g𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(+g𝑅)𝑞))⟩})
27 eqid 2729 . . . . 5 (.r𝑈) = (.r𝑈)
2813, 14, 23, 24, 16, 27imasmulr 17481 . . . 4 (𝜑 → (.r𝑈) = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝(.r𝑅)𝑞))⟩})
29 eqidd 2730 . . . 4 (𝜑 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))) = 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞))))
30 eqidd 2730 . . . 4 (𝜑 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩} = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩})
31 eqidd 2730 . . . 4 (𝜑 → ((TopOpen‘𝑅) qTop 𝐹) = ((TopOpen‘𝑅) qTop 𝐹))
32 eqid 2729 . . . . 5 (dist‘𝑈) = (dist‘𝑈)
3313, 14, 23, 24, 21, 32imasds 17476 . . . 4 (𝜑 → (dist‘𝑈) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑅) ∘ 𝑔))), ℝ*, < )))
34 eqidd 2730 . . . 4 (𝜑 → ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹) = ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹))
3513, 14, 15, 16, 1, 17, 18, 19, 20, 21, 22, 26, 28, 29, 30, 31, 33, 34, 23, 24imasval 17474 . . 3 (𝜑𝑈 = (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩}))
3635fveq2d 6862 . 2 (𝜑 → (Scalar‘𝑈) = (Scalar‘(({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑈)⟩, ⟨(.r‘ndx), (.r𝑈)⟩} ∪ {⟨(Scalar‘ndx), 𝐺⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑉 (𝑝 ∈ (Base‘𝐺), 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝( ·𝑠𝑅)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝑝(·𝑖𝑅)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑅) qTop 𝐹)⟩, ⟨(le‘ndx), ((𝐹 ∘ (le‘𝑅)) ∘ 𝐹)⟩, ⟨(dist‘ndx), (dist‘𝑈)⟩})))
3712, 36eqtr4id 2783 1 (𝜑𝐺 = (Scalar‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  {csn 4589  {ctp 4593  cop 4595   ciun 4955  ccnv 5637  ccom 5642  ontowfo 6509  cfv 6511  (class class class)co 7387  cmpo 7389  1c1 11069  2c2 12241  cdc 12649  ndxcnx 17163  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  ·𝑖cip 17225  TopSetcts 17226  lecple 17227  distcds 17229  TopOpenctopn 17384   qTop cqtop 17466  s cimas 17467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-imas 17471
This theorem is referenced by:  quss  17509  xpssca  17539  imaslmod  33324  imaslmhm  33328  algextdeglem8  33714
  Copyright terms: Public domain W3C validator