MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbas Structured version   Visualization version   GIF version

Theorem prdsbas 17358
Description: Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
prdsbas.b 𝐵 = (Base‘𝑃)
prdsbas.i (𝜑 → dom 𝑅 = 𝐼)
Assertion
Ref Expression
prdsbas (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐼   𝑥,𝑃   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdsbas
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2731 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 prdsbas.i . . 3 (𝜑 → dom 𝑅 = 𝐼)
4 eqidd 2732 . . 3 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) = X𝑥𝐼 (Base‘(𝑅𝑥)))
5 eqidd 2732 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
6 eqidd 2732 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
7 eqidd 2732 . . 3 (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
8 eqidd 2732 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
9 eqidd 2732 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
10 eqidd 2732 . . 3 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
11 eqidd 2732 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
12 eqidd 2732 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
13 eqidd 2732 . . 3 (𝜑 → (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
14 prdsbas.s . . 3 (𝜑𝑆𝑉)
15 prdsbas.r . . 3 (𝜑𝑅𝑊)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15prdsval 17356 . 2 (𝜑𝑃 = (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
17 prdsbas.b . 2 𝐵 = (Base‘𝑃)
18 baseid 17120 . 2 Base = Slot (Base‘ndx)
1918strfvss 17095 . . . . . . 7 (Base‘(𝑅𝑥)) ⊆ ran (𝑅𝑥)
20 fvssunirn 6853 . . . . . . . 8 (𝑅𝑥) ⊆ ran 𝑅
21 rnss 5879 . . . . . . . 8 ((𝑅𝑥) ⊆ ran 𝑅 → ran (𝑅𝑥) ⊆ ran ran 𝑅)
22 uniss 4867 . . . . . . . 8 (ran (𝑅𝑥) ⊆ ran ran 𝑅 ran (𝑅𝑥) ⊆ ran ran 𝑅)
2320, 21, 22mp2b 10 . . . . . . 7 ran (𝑅𝑥) ⊆ ran ran 𝑅
2419, 23sstri 3944 . . . . . 6 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅
2524rgenw 3051 . . . . 5 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅
26 iunss 4994 . . . . 5 ( 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅 ↔ ∀𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅)
2725, 26mpbir 231 . . . 4 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅
28 rnexg 7832 . . . . . 6 (𝑅𝑊 → ran 𝑅 ∈ V)
29 uniexg 7673 . . . . . 6 (ran 𝑅 ∈ V → ran 𝑅 ∈ V)
3015, 28, 293syl 18 . . . . 5 (𝜑 ran 𝑅 ∈ V)
31 rnexg 7832 . . . . 5 ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
32 uniexg 7673 . . . . 5 (ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
3330, 31, 323syl 18 . . . 4 (𝜑 ran ran 𝑅 ∈ V)
34 ssexg 5261 . . . 4 (( 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅 ran ran 𝑅 ∈ V) → 𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
3527, 33, 34sylancr 587 . . 3 (𝜑 𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
36 ixpssmap2g 8851 . . 3 ( 𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V → X𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ( 𝑥𝐼 (Base‘(𝑅𝑥)) ↑m 𝐼))
37 ovex 7379 . . . 4 ( 𝑥𝐼 (Base‘(𝑅𝑥)) ↑m 𝐼) ∈ V
3837ssex 5259 . . 3 (X𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ( 𝑥𝐼 (Base‘(𝑅𝑥)) ↑m 𝐼) → X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
3935, 36, 383syl 18 . 2 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
40 snsstp1 4768 . . . 4 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩}
41 ssun1 4128 . . . 4 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
4240, 41sstri 3944 . . 3 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
43 ssun1 4128 . . 3 ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
4442, 43sstri 3944 . 2 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
4516, 17, 18, 39, 44prdsbaslem 17354 1 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cun 3900  wss 3902  {csn 4576  {cpr 4578  {ctp 4580  cop 4582   cuni 4859   ciun 4941   class class class wbr 5091  {copab 5153  cmpt 5172   × cxp 5614  dom cdm 5616  ran crn 5617  ccom 5620  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  m cmap 8750  Xcixp 8821  supcsup 9324  0cc0 11003  *cxr 11142   < clt 11143  ndxcnx 17101  Basecbs 17117  +gcplusg 17158  .rcmulr 17159  Scalarcsca 17161   ·𝑠 cvsca 17162  ·𝑖cip 17163  TopSetcts 17164  lecple 17165  distcds 17167  Hom chom 17169  compcco 17170  TopOpenctopn 17322  tcpt 17339   Σg cgsu 17341  Xscprds 17346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-prds 17348
This theorem is referenced by:  prdsplusg  17359  prdsmulr  17360  prdsvsca  17361  prdsip  17362  prdsle  17363  prdsds  17365  prdstset  17367  prdshom  17368  prdsco  17369  prdsbas2  17370  pwsbas  17388  dsmmval  21669  frlmip  21713  prdstps  23542  rrxip  25315  prdstotbnd  37833
  Copyright terms: Public domain W3C validator