MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbas Structured version   Visualization version   GIF version

Theorem prdsbas 16722
Description: Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
prdsbas.b 𝐵 = (Base‘𝑃)
prdsbas.i (𝜑 → dom 𝑅 = 𝐼)
Assertion
Ref Expression
prdsbas (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐼   𝑥,𝑃   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdsbas
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2819 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 prdsbas.i . . 3 (𝜑 → dom 𝑅 = 𝐼)
4 eqidd 2820 . . 3 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) = X𝑥𝐼 (Base‘(𝑅𝑥)))
5 eqidd 2820 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
6 eqidd 2820 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
7 eqidd 2820 . . 3 (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
8 eqidd 2820 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
9 eqidd 2820 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
10 eqidd 2820 . . 3 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
11 eqidd 2820 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
12 eqidd 2820 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
13 eqidd 2820 . . 3 (𝜑 → (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ (𝑐(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ (𝑐(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
14 prdsbas.s . . 3 (𝜑𝑆𝑉)
15 prdsbas.r . . 3 (𝜑𝑅𝑊)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15prdsval 16720 . 2 (𝜑𝑃 = (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ (𝑐(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
17 prdsbas.b . 2 𝐵 = (Base‘𝑃)
18 baseid 16535 . 2 Base = Slot (Base‘ndx)
1918strfvss 16498 . . . . . . 7 (Base‘(𝑅𝑥)) ⊆ ran (𝑅𝑥)
20 fvssunirn 6692 . . . . . . . 8 (𝑅𝑥) ⊆ ran 𝑅
21 rnss 5802 . . . . . . . 8 ((𝑅𝑥) ⊆ ran 𝑅 → ran (𝑅𝑥) ⊆ ran ran 𝑅)
22 uniss 4851 . . . . . . . 8 (ran (𝑅𝑥) ⊆ ran ran 𝑅 ran (𝑅𝑥) ⊆ ran ran 𝑅)
2320, 21, 22mp2b 10 . . . . . . 7 ran (𝑅𝑥) ⊆ ran ran 𝑅
2419, 23sstri 3974 . . . . . 6 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅
2524rgenw 3148 . . . . 5 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅
26 iunss 4960 . . . . 5 ( 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅 ↔ ∀𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅)
2725, 26mpbir 233 . . . 4 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅
28 rnexg 7606 . . . . . 6 (𝑅𝑊 → ran 𝑅 ∈ V)
29 uniexg 7458 . . . . . 6 (ran 𝑅 ∈ V → ran 𝑅 ∈ V)
3015, 28, 293syl 18 . . . . 5 (𝜑 ran 𝑅 ∈ V)
31 rnexg 7606 . . . . 5 ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
32 uniexg 7458 . . . . 5 (ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
3330, 31, 323syl 18 . . . 4 (𝜑 ran ran 𝑅 ∈ V)
34 ssexg 5218 . . . 4 (( 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅 ran ran 𝑅 ∈ V) → 𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
3527, 33, 34sylancr 589 . . 3 (𝜑 𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
36 ixpssmap2g 8483 . . 3 ( 𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V → X𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ( 𝑥𝐼 (Base‘(𝑅𝑥)) ↑m 𝐼))
37 ovex 7181 . . . 4 ( 𝑥𝐼 (Base‘(𝑅𝑥)) ↑m 𝐼) ∈ V
3837ssex 5216 . . 3 (X𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ( 𝑥𝐼 (Base‘(𝑅𝑥)) ↑m 𝐼) → X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
3935, 36, 383syl 18 . 2 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
40 snsstp1 4741 . . . 4 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩}
41 ssun1 4146 . . . 4 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
4240, 41sstri 3974 . . 3 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
43 ssun1 4146 . . 3 ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ (𝑐(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
4442, 43sstri 3974 . 2 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ (𝑐(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))(2nd𝑎)), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
4516, 17, 18, 39, 44prdsvallem 16719 1 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  wral 3136  Vcvv 3493  cun 3932  wss 3934  {csn 4559  {cpr 4561  {ctp 4563  cop 4565   cuni 4830   ciun 4910   class class class wbr 5057  {copab 5119  cmpt 5137   × cxp 5546  dom cdm 5548  ran crn 5549  ccom 5552  cfv 6348  (class class class)co 7148  cmpo 7150  1st c1st 7679  2nd c2nd 7680  m cmap 8398  Xcixp 8453  supcsup 8896  0cc0 10529  *cxr 10666   < clt 10667  ndxcnx 16472  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  ·𝑖cip 16562  TopSetcts 16563  lecple 16564  distcds 16566  Hom chom 16568  compcco 16569  TopOpenctopn 16687  tcpt 16704   Σg cgsu 16706  Xscprds 16711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713
This theorem is referenced by:  prdsplusg  16723  prdsmulr  16724  prdsvsca  16725  prdsip  16726  prdsle  16727  prdsds  16729  prdstset  16731  prdshom  16732  prdsco  16733  prdsbas2  16734  pwsbas  16752  dsmmval  20870  frlmip  20914  prdstps  22229  rrxip  23985  prdstotbnd  35064
  Copyright terms: Public domain W3C validator