Step | Hyp | Ref
| Expression |
1 | | prdsbas.p |
. . 3
⊢ 𝑃 = (𝑆Xs𝑅) |
2 | | eqid 2738 |
. . 3
⊢
(Base‘𝑆) =
(Base‘𝑆) |
3 | | prdsbas.i |
. . 3
⊢ (𝜑 → dom 𝑅 = 𝐼) |
4 | | eqidd 2739 |
. . 3
⊢ (𝜑 → X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
5 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
6 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
7 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
8 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
9 | | eqidd 2739 |
. . 3
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen
∘ 𝑅))) |
10 | | eqidd 2739 |
. . 3
⊢ (𝜑 → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
11 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))
= (𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
12 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
13 | | eqidd 2739 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
14 | | prdsbas.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
15 | | prdsbas.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15 | prdsval 17083 |
. 2
⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
17 | | prdsbas.b |
. 2
⊢ 𝐵 = (Base‘𝑃) |
18 | | baseid 16843 |
. 2
⊢ Base =
Slot (Base‘ndx) |
19 | 18 | strfvss 16816 |
. . . . . . 7
⊢
(Base‘(𝑅‘𝑥)) ⊆ ∪ ran
(𝑅‘𝑥) |
20 | | fvssunirn 6785 |
. . . . . . . 8
⊢ (𝑅‘𝑥) ⊆ ∪ ran
𝑅 |
21 | | rnss 5837 |
. . . . . . . 8
⊢ ((𝑅‘𝑥) ⊆ ∪ ran
𝑅 → ran (𝑅‘𝑥) ⊆ ran ∪
ran 𝑅) |
22 | | uniss 4844 |
. . . . . . . 8
⊢ (ran
(𝑅‘𝑥) ⊆ ran ∪
ran 𝑅 → ∪ ran (𝑅‘𝑥) ⊆ ∪ ran
∪ ran 𝑅) |
23 | 20, 21, 22 | mp2b 10 |
. . . . . . 7
⊢ ∪ ran (𝑅‘𝑥) ⊆ ∪ ran
∪ ran 𝑅 |
24 | 19, 23 | sstri 3926 |
. . . . . 6
⊢
(Base‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran 𝑅 |
25 | 24 | rgenw 3075 |
. . . . 5
⊢
∀𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran 𝑅 |
26 | | iunss 4971 |
. . . . 5
⊢ (∪ 𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran 𝑅 ↔ ∀𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran 𝑅) |
27 | 25, 26 | mpbir 230 |
. . . 4
⊢ ∪ 𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran 𝑅 |
28 | | rnexg 7725 |
. . . . . 6
⊢ (𝑅 ∈ 𝑊 → ran 𝑅 ∈ V) |
29 | | uniexg 7571 |
. . . . . 6
⊢ (ran
𝑅 ∈ V → ∪ ran 𝑅 ∈ V) |
30 | 15, 28, 29 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ∪ ran 𝑅 ∈ V) |
31 | | rnexg 7725 |
. . . . 5
⊢ (∪ ran 𝑅 ∈ V → ran ∪ ran 𝑅 ∈ V) |
32 | | uniexg 7571 |
. . . . 5
⊢ (ran
∪ ran 𝑅 ∈ V → ∪ ran ∪ ran 𝑅 ∈ V) |
33 | 30, 31, 32 | 3syl 18 |
. . . 4
⊢ (𝜑 → ∪ ran ∪ ran 𝑅 ∈ V) |
34 | | ssexg 5242 |
. . . 4
⊢
((∪ 𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran 𝑅 ∧ ∪ ran
∪ ran 𝑅 ∈ V) → ∪ 𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
35 | 27, 33, 34 | sylancr 586 |
. . 3
⊢ (𝜑 → ∪ 𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
36 | | ixpssmap2g 8673 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∈ V → X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) ⊆ (∪ 𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↑m 𝐼)) |
37 | | ovex 7288 |
. . . 4
⊢ (∪ 𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↑m 𝐼) ∈ V |
38 | 37 | ssex 5240 |
. . 3
⊢ (X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) ⊆ (∪ 𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↑m 𝐼) → X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
39 | 35, 36, 38 | 3syl 18 |
. 2
⊢ (𝜑 → X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)) ∈ V) |
40 | | snsstp1 4746 |
. . . 4
⊢
{〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉} ⊆ {〈(Base‘ndx),
X𝑥
∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} |
41 | | ssun1 4102 |
. . . 4
⊢
{〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ⊆ ({〈(Base‘ndx),
X𝑥
∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) |
42 | 40, 41 | sstri 3926 |
. . 3
⊢
{〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉} ⊆ ({〈(Base‘ndx),
X𝑥
∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) |
43 | | ssun1 4102 |
. . 3
⊢
({〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ⊆ (({〈(Base‘ndx),
X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
44 | 42, 43 | sstri 3926 |
. 2
⊢
{〈(Base‘ndx), X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))〉} ⊆ (({〈(Base‘ndx),
X𝑥
∈ 𝐼 (Base‘(𝑅‘𝑥))〉, 〈(+g‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ X𝑥 ∈
𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑅))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), (𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) × X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))), 𝑐 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)), 𝑔 ∈ X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥)) ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
45 | 16, 17, 18, 39, 44 | prdsbaslem 17081 |
1
⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |