MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbas Structured version   Visualization version   GIF version

Theorem prdsbas 17168
Description: Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.)
Hypotheses
Ref Expression
prdsbas.p 𝑃 = (𝑆Xs𝑅)
prdsbas.s (𝜑𝑆𝑉)
prdsbas.r (𝜑𝑅𝑊)
prdsbas.b 𝐵 = (Base‘𝑃)
prdsbas.i (𝜑 → dom 𝑅 = 𝐼)
Assertion
Ref Expression
prdsbas (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐼   𝑥,𝑃   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem prdsbas
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3 𝑃 = (𝑆Xs𝑅)
2 eqid 2738 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 prdsbas.i . . 3 (𝜑 → dom 𝑅 = 𝐼)
4 eqidd 2739 . . 3 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) = X𝑥𝐼 (Base‘(𝑅𝑥)))
5 eqidd 2739 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥)))))
6 eqidd 2739 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥)))))
7 eqidd 2739 . . 3 (𝜑 → (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))) = (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥)))))
8 eqidd 2739 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥))))))
9 eqidd 2739 . . 3 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅)))
10 eqidd 2739 . . 3 (𝜑 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
11 eqidd 2739 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < )))
12 eqidd 2739 . . 3 (𝜑 → (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))) = (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥))))
13 eqidd 2739 . . 3 (𝜑 → (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))) = (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥))))))
14 prdsbas.s . . 3 (𝜑𝑆𝑉)
15 prdsbas.r . . 3 (𝜑𝑅𝑊)
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15prdsval 17166 . 2 (𝜑𝑃 = (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
17 prdsbas.b . 2 𝐵 = (Base‘𝑃)
18 baseid 16915 . 2 Base = Slot (Base‘ndx)
1918strfvss 16888 . . . . . . 7 (Base‘(𝑅𝑥)) ⊆ ran (𝑅𝑥)
20 fvssunirn 6803 . . . . . . . 8 (𝑅𝑥) ⊆ ran 𝑅
21 rnss 5848 . . . . . . . 8 ((𝑅𝑥) ⊆ ran 𝑅 → ran (𝑅𝑥) ⊆ ran ran 𝑅)
22 uniss 4847 . . . . . . . 8 (ran (𝑅𝑥) ⊆ ran ran 𝑅 ran (𝑅𝑥) ⊆ ran ran 𝑅)
2320, 21, 22mp2b 10 . . . . . . 7 ran (𝑅𝑥) ⊆ ran ran 𝑅
2419, 23sstri 3930 . . . . . 6 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅
2524rgenw 3076 . . . . 5 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅
26 iunss 4975 . . . . 5 ( 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅 ↔ ∀𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅)
2725, 26mpbir 230 . . . 4 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅
28 rnexg 7751 . . . . . 6 (𝑅𝑊 → ran 𝑅 ∈ V)
29 uniexg 7593 . . . . . 6 (ran 𝑅 ∈ V → ran 𝑅 ∈ V)
3015, 28, 293syl 18 . . . . 5 (𝜑 ran 𝑅 ∈ V)
31 rnexg 7751 . . . . 5 ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
32 uniexg 7593 . . . . 5 (ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V)
3330, 31, 323syl 18 . . . 4 (𝜑 ran ran 𝑅 ∈ V)
34 ssexg 5247 . . . 4 (( 𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ran ran 𝑅 ran ran 𝑅 ∈ V) → 𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
3527, 33, 34sylancr 587 . . 3 (𝜑 𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
36 ixpssmap2g 8715 . . 3 ( 𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V → X𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ( 𝑥𝐼 (Base‘(𝑅𝑥)) ↑m 𝐼))
37 ovex 7308 . . . 4 ( 𝑥𝐼 (Base‘(𝑅𝑥)) ↑m 𝐼) ∈ V
3837ssex 5245 . . 3 (X𝑥𝐼 (Base‘(𝑅𝑥)) ⊆ ( 𝑥𝐼 (Base‘(𝑅𝑥)) ↑m 𝐼) → X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
3935, 36, 383syl 18 . 2 (𝜑X𝑥𝐼 (Base‘(𝑅𝑥)) ∈ V)
40 snsstp1 4749 . . . 4 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩}
41 ssun1 4106 . . . 4 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ⊆ ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
4240, 41sstri 3930 . . 3 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩})
43 ssun1 4106 . . 3 ({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ⊆ (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
4442, 43sstri 3930 . 2 {⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩} ⊆ (({⟨(Base‘ndx), X𝑥𝐼 (Base‘(𝑅𝑥))⟩, ⟨(+g‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(+g‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ ((𝑓𝑥)(.r‘(𝑅𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑆⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑆), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑥𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑆 Σg (𝑥𝐼 ↦ ((𝑓𝑥)(·𝑖‘(𝑅𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑅))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ X𝑥𝐼 (Base‘(𝑅𝑥)) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ sup((ran (𝑥𝐼 ↦ ((𝑓𝑥)(dist‘(𝑅𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), (𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))⟩, ⟨(comp‘ndx), (𝑎 ∈ (X𝑥𝐼 (Base‘(𝑅𝑥)) × X𝑥𝐼 (Base‘(𝑅𝑥))), 𝑐X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ (𝑑 ∈ ((2nd𝑎)(𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))𝑐), 𝑒 ∈ ((𝑓X𝑥𝐼 (Base‘(𝑅𝑥)), 𝑔X𝑥𝐼 (Base‘(𝑅𝑥)) ↦ X𝑥𝐼 ((𝑓𝑥)(Hom ‘(𝑅𝑥))(𝑔𝑥)))‘𝑎) ↦ (𝑥𝐼 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑅𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩}))
4516, 17, 18, 39, 44prdsbaslem 17164 1 (𝜑𝐵 = X𝑥𝐼 (Base‘(𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  wss 3887  {csn 4561  {cpr 4563  {ctp 4565  cop 4567   cuni 4839   ciun 4924   class class class wbr 5074  {copab 5136  cmpt 5157   × cxp 5587  dom cdm 5589  ran crn 5590  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  m cmap 8615  Xcixp 8685  supcsup 9199  0cc0 10871  *cxr 11008   < clt 11009  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  ·𝑖cip 16967  TopSetcts 16968  lecple 16969  distcds 16971  Hom chom 16973  compcco 16974  TopOpenctopn 17132  tcpt 17149   Σg cgsu 17151  Xscprds 17156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-prds 17158
This theorem is referenced by:  prdsplusg  17169  prdsmulr  17170  prdsvsca  17171  prdsip  17172  prdsle  17173  prdsds  17175  prdstset  17177  prdshom  17178  prdsco  17179  prdsbas2  17180  pwsbas  17198  dsmmval  20941  frlmip  20985  prdstps  22780  rrxip  24554  prdstotbnd  35952
  Copyright terms: Public domain W3C validator